少量样本查询分析实验#
本笔记本详细介绍了如何使用查询分析数据集在工具调用模型上运行基准测试。
设置#
首先,让我们安装依赖项并导入相关模块。
%pip install -qU langchain-benchmarks langchain-community langchain-openai pandas numpy matplotlib seaborn
import uuid
from collections import Counter
from datetime import datetime
from typing import Optional
from langchain.chat_models import init_chat_model
from langchain_community.vectorstores import FAISS
from langchain_core.example_selectors import SemanticSimilarityExampleSelector
from langchain_core.messages import AIMessage, HumanMessage, ToolMessage
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import (
ChatPromptTemplate,
FewShotChatMessagePromptTemplate,
MessagesPlaceholder,
)
from langchain_openai import OpenAIEmbeddings
from langsmith.client import Client
from langsmith.evaluation import evaluate
from langsmith.evaluation.evaluator import EvaluationResult, EvaluationResults
from langsmith.schemas import Example, Run
from langchain_benchmarks.tool_usage.tasks.query_analysis import (
QUERY_ANALYSIS_TASK,
BlogQuery,
DocQuery,
TweetQuery,
)
# Define our LangSmith client so we have access to it throughout the rest of the notebook
client = Client()
辅助函数#
首先,让我们设置一些辅助函数。calculate_recall
辅助函数用于测试模型正确查询所有预期查询的能力,并且不会因查询额外信息而对其进行惩罚。is_iso_format
函数用于检查我们正在测试准确性的一些字段是否为 datetime
格式。我们使用 LLM-as-a-judge 来判断模型提供的实际搜索查询是否与我们预期的搜索查询意义相似。
def calculate_recall(A, B):
# Count the occurrences of each element in A and B
count_A = Counter(A)
count_B = Counter(B)
# Calculate the number of true positives
true_positives = sum(min(count_A[elem], count_B.get(elem, 0)) for elem in count_A)
# Calculate recall
recall = true_positives / sum(count_A.values()) if count_A else 0
return recall
def is_iso_format(date_str):
if not isinstance(date_str, str):
return False
try:
# Try to parse the string with datetime.fromisoformat
datetime.fromisoformat(date_str)
return True
except ValueError:
return False
llm_judge = ChatOpenAI(model="gpt-4o")
judge_prompt = ChatPromptTemplate.from_messages(
[
(
"system",
"You are an llm tasked with determining if the subject extracted by another LLM is an accurate "
"representation of the correct answer. You are to check for general semantic similarity since the words might not "
"match up perfectly but the meaning might still be the same. Return YES if the answers match, and NO otherwise. "
"Never return anything other than YES or NO.",
),
(
"human",
"Is this query: {run_query} somewhat similar to this reference query: {reference_query}",
),
]
)
judge_chain = judge_prompt | llm_judge | StrOutputParser()
# Tools imported from extract_query file
tools = [DocQuery, TweetQuery, BlogQuery]
定义评估器函数#
现在我们准备定义评估器函数。我们的评估器函数将检查模型是否也以正确的参数复现了所有预期的工具调用。如果所有预期的工具调用都在最终响应中且参数正确,我们则分配总分 1。我们还会为调用正确工具、获取正确的确定性参数以及获取正确的不确定性参数给予部分分数。
def compare_outputs(run_outputs: dict, example_outputs: dict) -> EvaluationResults:
if len(run_outputs["response"].tool_calls) == 0:
correct_tool_score, determinstic_score, underministic_score = 0, 0, 0
else:
# Chose the correct tool
reference_tools = [tool["name"] for tool in example_outputs["reference"]]
outputted_tools = [tool["name"] for tool in run_outputs["response"].tool_calls]
correct_tool_score = calculate_recall(reference_tools, outputted_tools)
# Has the correct determenistic args
determinstic_score = 0
# Has the correct undetermenistic args
underministic_score = 0
if correct_tool_score == 1:
determinstic_score, underministic_score = 1, 1
for tool in example_outputs["reference"]:
corresponding_response_tool = [
t
for t in run_outputs["response"].tool_calls
if t["name"] == tool["name"]
][0]["args"]
for arg in tool["args"]:
# Check that outputted search query matches the meaning of expected search query
if arg in ["query", "subject"]:
ans = judge_chain.invoke(
{
"run_query": corresponding_response_tool[arg],
"reference_query": tool["args"][arg],
}
)
underministic_score = 1 if ans == "YES" else 0
else:
# Check that tool call arguments are correct (being careful with datetime objects)
if (
tool["args"][arg] and arg not in corresponding_response_tool
) or (
tool["args"][arg]
and not (
tool["args"][arg] == corresponding_response_tool[arg]
)
and not (
is_iso_format(tool["args"][arg])
and is_iso_format(corresponding_response_tool[arg])
and datetime.fromisoformat(
(corresponding_response_tool[arg])
).replace(tzinfo=None)
== datetime.fromisoformat(tool["args"][arg])
)
):
determinstic_score = 0
# Overall correctness
overall_score = int(
correct_tool_score == 1
and bool(determinstic_score)
and bool(underministic_score)
)
results = [
EvaluationResult(
key="Correct tool",
score=correct_tool_score,
),
EvaluationResult(
key="Correct determenistic args",
score=determinstic_score,
),
EvaluationResult(
key="Correct undermenistic args",
score=underministic_score,
),
EvaluationResult(
key="Overall correctness",
score=overall_score,
),
]
return {"results": results}
def evaluate_run(run: Run, example: Optional[Example] = None) -> EvaluationResults:
return compare_outputs(run.outputs, example.outputs)
少量样本准备#
现在我们准备好运行跨不同少量样本提示策略的评估脚本。在下一个代码单元格中,我们从 LangSmith 中提取未清理的少量样本示例,然后创建一个用于语义搜索的数据集,以及一个包含消息的总体少量样本列表和总体字符串——这两者都将插入到提示中用于少量样本测试。
uncleaned_examples = [
e for e in client.list_examples(dataset_name="Extraction Task Few Shot")
]
few_shot_messages, few_shot_str = [], ""
few_shot_messages_by_index = {}
examples_for_semantic_search = []
for j, example in enumerate(uncleaned_examples):
few_shot_messages_for_example = []
few_shot_messages_for_example.append(
HumanMessage(
name="example_human", content=example.inputs["question"][0]["content"]
)
)
few_shot_messages_for_example.append(
AIMessage(
name="example_assistant",
content="",
tool_calls=[
{
"name": tc["name"],
"args": tc["args"],
"type": "tool_call",
"id": f"{10*j+i}",
}
for i, tc in enumerate(example.outputs["reference"])
],
)
)
few_shot_str += (
f"<|im_start|>user\n{example.inputs['question'][0]['content']}\n<|im_end|>"
)
few_shot_str += "\n<|im_start|>assistant\n"
for i, tool_call in enumerate(example.outputs["reference"]):
few_shot_messages_for_example.append(
ToolMessage(
"You have correctly called this tool",
name=tool_call["name"],
tool_call_id=f"{10*j+i}",
)
)
few_shot_str += f"Tool Call: Name: {tool_call['name']} Args: {{{', '.join(f'{k}: {v}' for k,v in tool_call['args'].items())}}}"
few_shot_str += "\n"
few_shot_str += "<|im_end|>"
few_shot_messages += few_shot_messages_for_example
few_shot_messages_by_index[j] = few_shot_messages_for_example
examples_for_semantic_search.append(
{
"question": example.inputs["question"][0]["content"],
"messages": few_shot_messages_for_example,
}
)
预测函数#
接下来,我们可以编写预测函数,该函数将根据所提供的少量样本方法而异。除了语义搜索方法外,该函数对所有方法都非常相似。在语义搜索方法中,我们需要添加一些额外的逻辑来提取正确的示例,然后将其插入到提示中。
# 3 static indices to compare against using semantic search to select 3 few-shot examples
static_indices = [0, 2, 5]
# Default prompt format we will use for all examples
prompt = ChatPromptTemplate.from_messages(
[
("system", "{instructions}"),
MessagesPlaceholder("few_shot_message_list"),
("human", "{input}"),
]
)
def predict_for_model(model, instructions, few_shot_method):
few_shot_message_list = []
chain = prompt | model.bind_tools(tools, tool_choice="any").with_retry(
stop_after_attempt=5
)
if few_shot_method == "few-shot-string":
instructions += f"\n Here are some examples: \n {few_shot_str}"
elif few_shot_method == "few-shot-messages":
few_shot_message_list = few_shot_messages
elif few_shot_method == "few-shot-static-messages":
few_shot_message_list = [
message
for index in static_indices
for message in few_shot_messages_by_index[index]
]
elif few_shot_method == "few-shot-dynamic-messages":
def predict(example: dict):
example_selector = SemanticSimilarityExampleSelector.from_examples(
examples_for_semantic_search,
OpenAIEmbeddings(),
FAISS,
k=3,
input_keys=["question"],
example_keys=["messages"],
)
few_shot_prompt = FewShotChatMessagePromptTemplate(
input_variables=[],
example_selector=example_selector,
example_prompt=MessagesPlaceholder("messages"),
)
return {
"response": chain.invoke(
{
"input": example["question"],
"instructions": instructions,
"few_shot_message_list": few_shot_prompt.invoke(
{"question": example["question"][0]["content"]}
).messages,
}
)
}
return predict
def predict(example: dict):
return {
"response": chain.invoke(
{
"input": example["question"],
"instructions": instructions,
"few_shot_message_list": few_shot_message_list,
}
)
}
return predict
运行实验#
既然我们已经定义了评估函数,我们就可以实际运行评估了!下面的代码会遍历不同的模型,然后对它们全部调用我们的评估器函数。
models = [
(
"claude-3-haiku-20240307",
"anthropic",
),
(
"claude-3-sonnet-20240229",
"anthropic",
),
(
"claude-3-opus-20240229",
"anthropic",
),
(
"claude-3-5-sonnet-20240620",
"anthropic",
),
("gpt-3.5-turbo-0125", "openai"),
("gpt-4o", "openai"),
("gpt-4o-mini", "openai"),
("llama3-groq-70b-8192-tool-use-preview", "groq"),
("llama3-groq-8b-8192-tool-use-preview", "groq"),
]
# These are all the currently supported methods
few_shot_methods = [
"no-few-shot",
"few-shot-string",
"few-shot-messages",
"few-shot-static-messages",
"few-shot-dynamic-messages",
]
experiment_uuid = uuid.uuid4().hex[:4]
for model_name, model_provider in models:
model = init_chat_model(model_name, model_provider=model_provider, temperature=0)
for few_shot_method in few_shot_methods:
evaluate(
predict_for_model(model, QUERY_ANALYSIS_TASK.instructions, few_shot_method),
data=QUERY_ANALYSIS_TASK.name,
evaluators=[evaluate_run],
experiment_prefix=f"test-{model_name}-{few_shot_method}",
metadata={"id": experiment_uuid},
)
可视化结果#
projects = [
p
for p in client.list_projects(reference_dataset_name="Extraction Task")
if "id" in p.metadata and p.metadata["id"] == "bf61" # experiment_uuid
]
models = set([p.name.split("-TEST")[0] for p in projects])
few_shot_type = set([p.name.split("TEST-")[1] for p in projects])
few_shot_type = set([t[t.index("-") + 1 : t.rfind("-")] for t in few_shot_type])
from tqdm import tqdm
results_dic = {}
for model in tqdm(models, total=len(list(models))):
model_results = []
for few_shot in few_shot_type:
experiments = [
p for p in projects if model + "-TEST" in p.name and few_shot in p.name
]
experiment_stats = client.get_run_stats(
project_ids=[experiment.id for experiment in experiments], is_root=True
)
model_results.append(
100
* experiment_stats["feedback_stats"]["overall correctness"]["avg"]
* (1 - experiment_stats["error_rate"])
)
results_dic[model] = model_results
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
results = np.array([results_dic[model] for model in models])
# Create a DataFrame for Seaborn plotting
df = pd.DataFrame(results.T, columns=list(models))
df["Few Shot Type"] = list(few_shot_type)
df.iloc[[0, 1, 2, 3, 4]] = df.iloc[[4, 1, 2, 0, 3]].to_numpy()
df = df[df.columns[[2, 6, 5, 1, 4, 3, 0, 7]]]
# Melt the DataFrame to long format for Seaborn's barplot
df_melted = df.melt(
id_vars="Few Shot Type", var_name="Model", value_name="Percent Correct"
)
# Set up Seaborn parameters
plt.figure(figsize=(12, 6))
sns.set_theme(style="whitegrid")
# Plot using Seaborn
sns.barplot(
x="Model",
y="Percent Correct",
hue="Few Shot Type",
data=df_melted,
palette="viridis",
)
# Add labels and title
plt.xlabel("Model")
plt.ylabel("Percent Correct")
plt.title("Query Analysis Results")
plt.xticks(rotation=45)
plt.tight_layout()
legend_labels = {
"no-few-shot": "zero-shot",
"few-shot-messages": "few-shot-msgs, k=13",
"few-shot-string": "few-shot-str, k=13",
"few-shot-dynamic-messages": "few-shot-dynamic-msgs, k=3",
"few-shot-static-messages": "few-shot-static-msgs, k=3",
}
# Get the current handles and labels from the plot
handles, labels = plt.gca().get_legend_handles_labels()
labels = [legend_labels.get(label, label) for label in labels]
# Update the legend with the new labels
plt.legend(handles, labels, loc="upper left", bbox_to_anchor=(1, 1))
plt.show()

比较语义搜索#
我们还可以计算使用语义搜索生成少量样本示例与我们仅选择三个静态示例时的平均正确率。
dynamic_experiments = [p for p in projects if "dynamic" in p.name]
static_experiments = [p for p in projects if "static" in p.name]
dynamic_overall = (
100
* client.get_run_stats(
project_ids=[experiment.id for experiment in dynamic_experiments]
)["feedback_stats"]["overall correctness"]["avg"]
)
static_overall = (
100
* client.get_run_stats(
project_ids=[experiment.id for experiment in static_experiments]
)["feedback_stats"]["overall correctness"]["avg"]
)
print(
f"Overall Accuracy with dynamic few shot: {dynamic_overall}, and static: {static_overall}"
)
Overall Accuracy with dynamic few shot: 46.54377880184332, and static: 32.25806451612903