跳到内容

如何使用 LangGraph 实现生成式用户界面

生成式用户界面(Generative UI)使代理能够超越文本,生成丰富的用户界面。这有助于创建更具交互性和上下文感知能力的应用程序,其中 UI 会根据对话流程和 AI 响应进行调整。

Generative UI Sample

LangGraph 平台支持将您的 React 组件与图代码放在一起。这使您可以专注于为您的图构建特定的 UI 组件,同时轻松插入现有的聊天界面(例如 Agent Chat),并且仅在实际需要时加载代码。

教程

1. 定义和配置 UI 组件

首先,创建您的第一个 UI 组件。对于每个组件,您都需要提供一个唯一标识符,该标识符将在图代码中用于引用该组件。

src/agent/ui.tsx
const WeatherComponent = (props: { city: string }) => {
  return <div>Weather for {props.city}</div>;
};

export default {
  weather: WeatherComponent,
};

接下来,在您的 langgraph.json 配置中定义 UI 组件

{
  "node_version": "20",
  "graphs": {
    "agent": "./src/agent/index.ts:graph"
  },
  "ui": {
    "agent": "./src/agent/ui.tsx"
  }
}

ui 部分指向图将使用的 UI 组件。默认情况下,我们建议使用与图名称相同的键,但您可以根据需要拆分组件,详见自定义 UI 组件的命名空间了解更多细节。

LangGraph 平台将自动打包您的 UI 组件代码和样式,并将其作为外部资源提供,这些资源可以通过 LoadExternalComponent 组件加载。某些依赖项(如 reactreact-dom)将自动从打包中排除。

CSS 和 Tailwind 4.x 也开箱即用,因此您可以在 UI 组件中自由使用 Tailwind 类以及 shadcn/ui

import "./styles.css";

const WeatherComponent = (props: { city: string }) => {
  return <div className="bg-red-500">Weather for {props.city}</div>;
};

export default {
  weather: WeatherComponent,
};
@import "tailwindcss";

2. 在图中发送 UI 组件

src/agent.py
import uuid
from typing import Annotated, Sequence, TypedDict

from langchain_core.messages import AIMessage, BaseMessage
from langchain_openai import ChatOpenAI
from langgraph.graph import StateGraph
from langgraph.graph.message import add_messages
from langgraph.graph.ui import AnyUIMessage, ui_message_reducer, push_ui_message


class AgentState(TypedDict):  # noqa: D101
    messages: Annotated[Sequence[BaseMessage], add_messages]
    ui: Annotated[Sequence[AnyUIMessage], ui_message_reducer]


async def weather(state: AgentState):
    class WeatherOutput(TypedDict):
        city: str

    weather: WeatherOutput = (
        await ChatOpenAI(model="gpt-4o-mini")
        .with_structured_output(WeatherOutput)
        .with_config({"tags": ["nostream"]})
        .ainvoke(state["messages"])
    )

    message = AIMessage(
        id=str(uuid.uuid4()),
        content=f"Here's the weather for {weather['city']}",
    )

    # Emit UI elements associated with the message
    push_ui_message("weather", weather, message=message)
    return {"messages": [message]}


workflow = StateGraph(AgentState)
workflow.add_node(weather)
workflow.add_edge("__start__", "weather")
graph = workflow.compile()

使用 typedUi 工具从代理节点发出 UI 元素

src/agent/index.ts
import {
  typedUi,
  uiMessageReducer,
} from "@langchain/langgraph-sdk/react-ui/server";

import { ChatOpenAI } from "@langchain/openai";
import { v4 as uuidv4 } from "uuid";
import { z } from "zod";

import type ComponentMap from "./ui.js";

import {
  Annotation,
  MessagesAnnotation,
  StateGraph,
  type LangGraphRunnableConfig,
} from "@langchain/langgraph";

const AgentState = Annotation.Root({
  ...MessagesAnnotation.spec,
  ui: Annotation({ reducer: uiMessageReducer, default: () => [] }),
});

export const graph = new StateGraph(AgentState)
  .addNode("weather", async (state, config) => {
    // Provide the type of the component map to ensure
    // type safety of `ui.push()` calls as well as
    // pushing the messages to the `ui` and sending a custom event as well.
    const ui = typedUi<typeof ComponentMap>(config);

    const weather = await new ChatOpenAI({ model: "gpt-4o-mini" })
      .withStructuredOutput(z.object({ city: z.string() }))
      .withConfig({ tags: ["nostream"] })
      .invoke(state.messages);

    const response = {
      id: uuidv4(),
      type: "ai",
      content: `Here's the weather for ${weather.city}`,
    };

    // Emit UI elements associated with the AI message
    ui.push({ name: "weather", props: weather }, { message: response });

    return { messages: [response] };
  })
  .addEdge("__start__", "weather")
  .compile();

3. 在您的 React 应用程序中处理 UI 元素

在客户端,您可以使用 useStream()LoadExternalComponent 来显示 UI 元素。

src/app/page.tsx
"use client";

import { useStream } from "@langchain/langgraph-sdk/react";
import { LoadExternalComponent } from "@langchain/langgraph-sdk/react-ui";

export default function Page() {
  const { thread, values } = useStream({
    apiUrl: "http://localhost:2024",
    assistantId: "agent",
  });

  return (
    <div>
      {thread.messages.map((message) => (
        <div key={message.id}>
          {message.content}
          {values.ui
            ?.filter((ui) => ui.metadata?.message_id === message.id)
            .map((ui) => (
              <LoadExternalComponent key={ui.id} stream={thread} message={ui} />
            ))}
        </div>
      ))}
    </div>
  );
}

在幕后,LoadExternalComponent 将从 LangGraph 平台获取 UI 组件的 JS 和 CSS,并在 shadow DOM 中渲染它们,从而确保样式与应用程序的其余部分隔离。

操作指南

在客户端提供自定义组件

如果您的客户端应用程序中已经加载了组件,您可以提供一个此类组件的映射,以便直接渲染,而无需从 LangGraph 平台获取 UI 代码。

const clientComponents = {
  weather: WeatherComponent,
};

<LoadExternalComponent
  stream={thread}
  message={ui}
  components={clientComponents}
/>;

在组件加载时显示加载 UI

您可以在组件加载时提供一个备用 UI 进行渲染。

<LoadExternalComponent
  stream={thread}
  message={ui}
  fallback={<div>Loading...</div>}
/>

自定义 UI 组件的命名空间。

默认情况下,LoadExternalComponent 将使用 useStream() Hook 的 assistantId 来获取 UI 组件的代码。您可以通过为 LoadExternalComponent 组件提供 namespace 属性来定制此行为。

<LoadExternalComponent
  stream={thread}
  message={ui}
  namespace="custom-namespace"
/>
{
  "ui": {
    "custom-namespace": "./src/agent/ui.tsx"
  }
}

从 UI 组件访问和交互线程状态

您可以使用 useStreamContext Hook 在 UI 组件内部访问线程状态。

import { useStreamContext } from "@langchain/langgraph-sdk/react-ui";

const WeatherComponent = (props: { city: string }) => {
  const { thread, submit } = useStreamContext();
  return (
    <>
      <div>Weather for {props.city}</div>

      <button
        onClick={() => {
          const newMessage = {
            type: "human",
            content: `What's the weather in ${props.city}?`,
          };

          submit({ messages: [newMessage] });
        }}
      >
        Retry
      </button>
    </>
  );
};

向客户端组件传递额外上下文

您可以通过为 LoadExternalComponent 组件提供 meta 属性来向客户端组件传递额外上下文。

<LoadExternalComponent stream={thread} message={ui} meta={{ userId: "123" }} />

然后,您可以使用 useStreamContext Hook 在 UI 组件中访问 meta 属性。

import { useStreamContext } from "@langchain/langgraph-sdk/react-ui";

const WeatherComponent = (props: { city: string }) => {
  const { meta } = useStreamContext<
    { city: string },
    { MetaType: { userId?: string } }
  >();

  return (
    <div>
      Weather for {props.city} (user: {meta?.userId})
    </div>
  );
};

从服务器流式传输 UI 消息

您可以使用 useStream() Hook 的 onCustomEvent 回调函数,在节点执行完成之前流式传输 UI 消息。这在 LLM 生成响应时更新 UI 组件特别有用。

import { uiMessageReducer } from "@langchain/langgraph-sdk/react-ui";

const { thread, submit } = useStream({
  apiUrl: "http://localhost:2024",
  assistantId: "agent",
  onCustomEvent: (event, options) => {
    options.mutate((prev) => {
      const ui = uiMessageReducer(prev.ui ?? [], event);
      return { ...prev, ui };
    });
  },
});

然后,您可以通过调用 ui.push() / push_ui_message() 并传入您希望更新的 UI 消息的相同 ID 来向 UI 组件推送更新。

from typing import Annotated, Sequence, TypedDict

from langchain_anthropic import ChatAnthropic
from langchain_core.messages import AIMessage, AIMessageChunk, BaseMessage
from langgraph.graph import StateGraph
from langgraph.graph.message import add_messages
from langgraph.graph.ui import AnyUIMessage, push_ui_message, ui_message_reducer


class AgentState(TypedDict):  # noqa: D101
    messages: Annotated[Sequence[BaseMessage], add_messages]
    ui: Annotated[Sequence[AnyUIMessage], ui_message_reducer]


class CreateTextDocument(TypedDict):
    """Prepare a document heading for the user."""

    title: str


async def writer_node(state: AgentState):
    model = ChatAnthropic(model="claude-3-5-sonnet-latest")
    message: AIMessage = await model.bind_tools(
        tools=[CreateTextDocument],
        tool_choice={"type": "tool", "name": "CreateTextDocument"},
    ).ainvoke(state["messages"])

    tool_call = next(
        (x["args"] for x in message.tool_calls if x["name"] == "CreateTextDocument"),
        None,
    )

    if tool_call:
        ui_message = push_ui_message("writer", tool_call, message=message)
        ui_message_id = ui_message["id"]

        # We're already streaming the LLM response to the client through UI messages
        # so we don't need to stream it again to the `messages` stream mode.
        content_stream = model.with_config({"tags": ["nostream"]}).astream(
            f"Create a document with the title: {tool_call['title']}"
        )

        content: AIMessageChunk | None = None
        async for chunk in content_stream:
            content = content + chunk if content else chunk

            push_ui_message(
                "writer",
                {"content": content.text()},
                id=ui_message_id,
                message=message,
                # Use `merge=rue` to merge props with the existing UI message
                merge=True,
            )

    return {"messages": [message]}
import {
  Annotation,
  MessagesAnnotation,
  type LangGraphRunnableConfig,
} from "@langchain/langgraph";
import { z } from "zod";
import { ChatAnthropic } from "@langchain/anthropic";
import {
  typedUi,
  uiMessageReducer,
} from "@langchain/langgraph-sdk/react-ui/server";
import type { AIMessageChunk } from "@langchain/core/messages";

import type ComponentMap from "./ui";

const AgentState = Annotation.Root({
  ...MessagesAnnotation.spec,
  ui: Annotation({ reducer: uiMessageReducer, default: () => [] }),
});

async function writerNode(
  state: typeof AgentState.State,
  config: LangGraphRunnableConfig
): Promise<typeof AgentState.Update> {
  const ui = typedUi<typeof ComponentMap>(config);

  const model = new ChatAnthropic({ model: "claude-3-5-sonnet-latest" });
  const message = await model
    .bindTools(
      [
        {
          name: "create_text_document",
          description: "Prepare a document heading for the user.",
          schema: z.object({ title: z.string() }),
        },
      ],
      { tool_choice: { type: "tool", name: "create_text_document" } }
    )
    .invoke(state.messages);

  type ToolCall = { name: "create_text_document"; args: { title: string } };
  const toolCall = message.tool_calls?.find(
    (tool): tool is ToolCall => tool.name === "create_text_document"
  );

  if (toolCall) {
    const { id, name } = ui.push(
      { name: "writer", props: { title: toolCall.args.title } },
      { message }
    );

    const contentStream = await model
      // We're already streaming the LLM response to the client through UI messages
      // so we don't need to stream it again to the `messages` stream mode.
      .withConfig({ tags: ["nostream"] })
      .stream(`Create a short poem with the topic: ${message.text}`);

    let content: AIMessageChunk | undefined;
    for await (const chunk of contentStream) {
      content = content?.concat(chunk) ?? chunk;

      ui.push(
        { id, name, props: { content: content?.text } },
        // Use `merge: true` to merge props with the existing UI message
        { message, merge: true }
      );
    }
  }

  return { messages: [message] };
}
function WriterComponent(props: { title: string; content?: string }) {
  return (
    <article>
      <h2>{props.title}</h2>
      <p style={{ whiteSpace: "pre-wrap" }}>{props.content}</p>
    </article>
  );
}

export default {
  weather: WriterComponent,
};

从状态中移除 UI 消息

与通过附加 RemoveMessage 从状态中移除消息类似,您可以通过调用 remove_ui_message / ui.delete 并传入 UI 消息的 ID 来从状态中移除 UI 消息。

from langgraph.graph.ui import push_ui_message, delete_ui_message

# push message
message = push_ui_message("weather", {"city": "London"})

# remove said message
delete_ui_message(message["id"])
// push message
const message = ui.push({ name: "weather", props: { city: "London" } });

// remove said message
ui.delete(message.id);

了解更多

评论