跳到内容

如何将人机回路流程添加到预构建的 ReAct 代理

前提条件

本指南假定您熟悉以下内容

本指南将展示如何将人机回路流程添加到预构建的 ReAct 代理。请参阅此教程,了解如何开始使用预构建的 ReAct 代理

您可以通过将 interrupt_before=["tools"] 传递给 create_react_agent,在调用工具之前添加断点。请注意,您需要使用检查点程序才能使其工作。

设置

首先,让我们安装所需的软件包并设置我们的 API 密钥

%%capture --no-stderr
%pip install -U langgraph langchain-openai
import getpass
import os


def _set_env(var: str):
    if not os.environ.get(var):
        os.environ[var] = getpass.getpass(f"{var}: ")


_set_env("OPENAI_API_KEY")

设置 LangSmith 以进行 LangGraph 开发

注册 LangSmith 以快速发现问题并提高 LangGraph 项目的性能。LangSmith 允许您使用跟踪数据来调试、测试和监控使用 LangGraph 构建的 LLM 应用程序 — 在此处阅读有关如何开始使用的更多信息。

代码

# First we initialize the model we want to use.
from langchain_openai import ChatOpenAI

model = ChatOpenAI(model="gpt-4o", temperature=0)


# For this tutorial we will use custom tool that returns pre-defined values for weather in two cities (NYC & SF)
from typing import Literal

from langchain_core.tools import tool


@tool
def get_weather(location: str):
    """Use this to get weather information from a given location."""
    if location.lower() in ["nyc", "new york"]:
        return "It might be cloudy in nyc"
    elif location.lower() in ["sf", "san francisco"]:
        return "It's always sunny in sf"
    else:
        raise AssertionError("Unknown Location")


tools = [get_weather]

# We need a checkpointer to enable human-in-the-loop patterns
from langgraph.checkpoint.memory import MemorySaver

memory = MemorySaver()

# Define the graph

from langgraph.prebuilt import create_react_agent

graph = create_react_agent(
    model, tools=tools, interrupt_before=["tools"], checkpointer=memory
)

API 参考:ChatOpenAI | tool | MemorySaver | create_react_agent

用法

def print_stream(stream):
    """A utility to pretty print the stream."""
    for s in stream:
        message = s["messages"][-1]
        if isinstance(message, tuple):
            print(message)
        else:
            message.pretty_print()
from langchain_core.messages import HumanMessage

config = {"configurable": {"thread_id": "42"}}
inputs = {"messages": [("user", "what is the weather in SF, CA?")]}

print_stream(graph.stream(inputs, config, stream_mode="values"))

API 参考:HumanMessage

================================ Human Message =================================

what is the weather in SF, CA?
================================== Ai Message ==================================
Tool Calls:
  get_weather (call_YjOKDkgMGgUZUpKIasYk1AdK)
 Call ID: call_YjOKDkgMGgUZUpKIasYk1AdK
  Args:
    location: SF, CA
我们可以验证我们的图表在正确的位置停止了

snapshot = graph.get_state(config)
print("Next step: ", snapshot.next)
Next step:  ('tools',)
现在我们可以选择批准或编辑工具调用,然后再继续到下一个节点。如果我们想批准工具调用,我们只需使用 None 输入继续流式传输图表。如果我们想编辑工具调用,我们需要更新状态以具有正确的工具调用,然后在应用更新后我们可以继续。

我们可以尝试恢复,我们将看到一个错误出现

print_stream(graph.stream(None, config, stream_mode="values"))
================================== Ai Message ==================================
Tool Calls:
  get_weather (call_YjOKDkgMGgUZUpKIasYk1AdK)
 Call ID: call_YjOKDkgMGgUZUpKIasYk1AdK
  Args:
    location: SF, CA
================================= Tool Message =================================
Name: get_weather

Error: AssertionError('Unknown Location')
 Please fix your mistakes.
================================== Ai Message ==================================
Tool Calls:
  get_weather (call_CLu9ofeBhtWF2oheBspxXkfE)
 Call ID: call_CLu9ofeBhtWF2oheBspxXkfE
  Args:
    location: San Francisco, CA
此错误出现的原因是我们的工具参数 “San Francisco, CA” 不是我们的工具识别的位置。

让我们展示如何编辑工具调用以搜索 “San Francisco” 而不是 “San Francisco, CA” - 因为我们编写的工具将 “San Francisco, CA” 视为未知位置。我们将更新状态,然后恢复流式传输图表,应该不会出现错误。

state = graph.get_state(config)

last_message = state.values["messages"][-1]
last_message.tool_calls[0]["args"] = {"location": "San Francisco"}

graph.update_state(config, {"messages": [last_message]})
{'configurable': {'thread_id': '42',
  'checkpoint_ns': '',
  'checkpoint_id': '1ef801d1-5b93-6bb9-8004-a088af1f9cec'}}

print_stream(graph.stream(None, config, stream_mode="values"))
================================== Ai Message ==================================
Tool Calls:
  get_weather (call_CLu9ofeBhtWF2oheBspxXkfE)
 Call ID: call_CLu9ofeBhtWF2oheBspxXkfE
  Args:
    location: San Francisco
================================= Tool Message =================================
Name: get_weather

It's always sunny in sf
================================== Ai Message ==================================

The weather in San Francisco is currently sunny.
太棒了!我们的图表已正确更新以查询旧金山的天气,并从工具中获得了正确的 “旧金山总是阳光明媚” 响应,然后相应地响应了用户。

评论