如何将运行时值传递给工具¶
有时,您希望让工具调用 LLM 填充工具函数参数的子集,并在运行时为其他参数提供其他值。如果您正在使用 LangChain 风格的 工具,则处理此问题的一种简单方法是使用 InjectedArg 注解函数参数。此注解会将该参数从 LLM 中排除。
在 LangGraph 应用程序中,您可能希望将图状态或 共享内存(存储)在运行时传递给工具。当工具的输出受过去代理步骤的影响时(例如,如果您正在使用子代理作为工具,并希望将消息历史记录传递给子代理),或者当工具的输入需要根据过去代理步骤的上下文进行验证时,这种类型的有状态工具非常有用。
在本指南中,我们将演示如何使用 LangGraph 的预构建 ToolNode 来做到这一点。
先决条件
本指南面向 **LangChain 工具调用**,并假定您熟悉以下内容
您仍然可以使用提供商 SDK 在 LangGraph 中使用工具调用,而不会丢失任何 LangGraph 的核心功能。以下示例的核心技术是将参数注解为“注入”,这意味着它将由您的程序注入,并且不应被 LLM 看到或填充。以下代码片段可作为 tl;dr
from typing import Annotated
from langchain_core.runnables import RunnableConfig
from langchain_core.tools import InjectedToolArg
from langgraph.store.base import BaseStore
from langgraph.prebuilt import InjectedState, InjectedStore
# Can be sync or async; @tool decorator not required
async def my_tool(
# These arguments are populated by the LLM
some_arg: str,
another_arg: float,
# The config: RunnableConfig is always available in LangChain calls
# This is not exposed to the LLM
config: RunnableConfig,
# The following three are specific to the prebuilt ToolNode
# (and `create_react_agent` by extension). If you are invoking the
# tool on its own (in your own node), then you would need to provide these yourself.
store: Annotated[BaseStore, InjectedStore],
# This passes in the full state.
state: Annotated[State, InjectedState],
# You can also inject single fields from your state if you
messages: Annotated[list, InjectedState("messages")]
# The following is not compatible with create_react_agent or ToolNode
# You can also exclude other arguments from being shown to the model.
# These must be provided manually and are useful if you call the tools/functions in your own node
# some_other_arg=Annotated["MyPrivateClass", InjectedToolArg],
):
"""Call my_tool to have an impact on the real world.
Args:
some_arg: a very important argument
another_arg: another argument the LLM will provide
""" # The docstring becomes the description for your tool and is passed to the model
print(some_arg, another_arg, config, store, state, messages)
# Config, some_other_rag, store, and state are all "hidden" from
# LangChain models when passed to bind_tools or with_structured_output
return "... some response"
API 参考:RunnableConfig | InjectedToolArg | InjectedState
设置¶
首先,我们需要安装所需的软件包
接下来,我们需要为 OpenAI(我们将使用的聊天模型)设置 API 密钥。
import getpass
import os
def _set_env(var: str):
if not os.environ.get(var):
os.environ[var] = getpass.getpass(f"{var}: ")
_set_env("OPENAI_API_KEY")
设置 LangSmith 以进行 LangGraph 开发
注册 LangSmith 以快速发现问题并提高 LangGraph 项目的性能。LangSmith 使您可以使用跟踪数据来调试、测试和监控使用 LangGraph 构建的 LLM 应用程序 — 阅读 此处 以了解更多关于如何开始的信息。
将图状态传递给工具¶
让我们首先看看如何让我们的工具访问图状态。我们需要定义我们的图状态
from typing import List
# this is the state schema used by the prebuilt create_react_agent we'll be using below
from langgraph.prebuilt.chat_agent_executor import AgentState
from langchain_core.documents import Document
class State(AgentState):
docs: List[str]
API 参考:Document
定义工具¶
我们希望我们的工具将图状态作为输入,但我们不希望模型在调用工具时尝试生成此输入。我们可以使用 InjectedState
注解将参数标记为必需的图状态(或图状态的某些字段)。这些参数不会由模型生成。当使用 ToolNode
时,图状态将自动传递到相关的工具和参数。
在此示例中,我们将创建一个返回 Documents 的工具,然后创建另一个实际引用 Documents 以证明声明合理的工具。
将 Pydantic 与 LangChain 结合使用
此笔记本使用 Pydantic v2 BaseModel
,这需要 langchain-core >= 0.3
。使用 langchain-core < 0.3
将因混合使用 Pydantic v1 和 v2 BaseModels
而导致错误。
from typing import List, Tuple
from typing_extensions import Annotated
from langchain_core.messages import ToolMessage
from langchain_core.tools import tool
from langgraph.prebuilt import InjectedState
@tool
def get_context(question: str, state: Annotated[dict, InjectedState]):
"""Get relevant context for answering the question."""
return "\n\n".join(doc for doc in state["docs"])
API 参考:ToolMessage | tool | InjectedState
如果我们查看这些工具的输入模式,我们会看到仍然列出了 state
{'description': 'Get relevant context for answering the question.',
'properties': {'question': {'title': 'Question', 'type': 'string'},
'state': {'title': 'State', 'type': 'object'}},
'required': ['question', 'state'],
'title': 'get_context',
'type': 'object'}
但是,如果我们查看工具调用模式,这是传递给模型进行工具调用的内容,则 state
已被删除
{'description': 'Get relevant context for answering the question.',
'properties': {'question': {'title': 'Question', 'type': 'string'}},
'required': ['question'],
'title': 'get_context',
'type': 'object'}
定义图¶
在此示例中,我们将使用 预构建的 ReAct 代理。我们首先需要定义我们的模型和一个工具调用节点(ToolNode)
from langchain_openai import ChatOpenAI
from langgraph.prebuilt import ToolNode, create_react_agent
from langgraph.checkpoint.memory import MemorySaver
model = ChatOpenAI(model="gpt-4o", temperature=0)
tools = [get_context]
# ToolNode will automatically take care of injecting state into tools
tool_node = ToolNode(tools)
checkpointer = MemorySaver()
graph = create_react_agent(model, tools, state_schema=State, checkpointer=checkpointer)
API 参考:ChatOpenAI | ToolNode | create_react_agent | MemorySaver
使用它!¶
docs = [
"FooBar company just raised 1 Billion dollars!",
"FooBar company was founded in 2019",
]
inputs = {
"messages": [{"type": "user", "content": "what's the latest news about FooBar"}],
"docs": docs,
}
config = {"configurable": {"thread_id": "1"}}
for chunk in graph.stream(inputs, config, stream_mode="values"):
chunk["messages"][-1].pretty_print()
================================[1m Human Message [0m=================================
what's the latest news about FooBar
==================================[1m Ai Message [0m==================================
Tool Calls:
get_context (call_UkqfR7z2cLJQjhatUpDeEa5H)
Call ID: call_UkqfR7z2cLJQjhatUpDeEa5H
Args:
question: latest news about FooBar
=================================[1m Tool Message [0m=================================
Name: get_context
FooBar company just raised 1 Billion dollars!
FooBar company was founded in 2019
==================================[1m Ai Message [0m==================================
The latest news about FooBar is that the company has just raised 1 billion dollars.
将共享内存(存储)传递给图¶
您可能还希望让工具访问在多个对话或用户之间共享的内存。我们可以通过使用不同的注解 -- InjectedStore
将 LangGraph Store 传递给工具来实现。
让我们修改我们的示例,将文档保存在内存存储中,并使用 get_context
工具检索它们。我们还将使文档基于用户 ID 可访问,以便某些文档仅对某些用户可见。然后,该工具将使用 config 中提供的 user_id
来检索正确的文档集。
注意
Store
API 和 InjectedStore
的支持是在 LangGraph v0.2.34
中添加的。InjectedStore
注解需要 langchain-core >= 0.3.8
from langgraph.store.memory import InMemoryStore
doc_store = InMemoryStore()
namespace = ("documents", "1") # user ID
doc_store.put(
namespace, "doc_0", {"doc": "FooBar company just raised 1 Billion dollars!"}
)
namespace = ("documents", "2") # user ID
doc_store.put(namespace, "doc_1", {"doc": "FooBar company was founded in 2019"})
定义工具¶
from langgraph.store.base import BaseStore
from langchain_core.runnables import RunnableConfig
from langgraph.prebuilt import InjectedStore
@tool
def get_context(
question: str,
config: RunnableConfig,
store: Annotated[BaseStore, InjectedStore()],
) -> Tuple[str, List[Document]]:
"""Get relevant context for answering the question."""
user_id = config.get("configurable", {}).get("user_id")
docs = [item.value["doc"] for item in store.search(("documents", user_id))]
return "\n\n".join(doc for doc in docs)
API 参考:RunnableConfig
我们还可以验证工具调用模型将忽略 get_context
工具的 store
参数
{'description': 'Get relevant context for answering the question.',
'properties': {'question': {'title': 'Question', 'type': 'string'}},
'required': ['question'],
'title': 'get_context',
'type': 'object'}
定义图¶
让我们更新我们的 ReAct 代理
tools = [get_context]
# ToolNode will automatically take care of injecting Store into tools
tool_node = ToolNode(tools)
checkpointer = MemorySaver()
# NOTE: we need to pass our store to `create_react_agent` to make sure our graph is aware of it
graph = create_react_agent(model, tools, checkpointer=checkpointer, store=doc_store)
使用它!¶
让我们尝试在配置中使用 "user_id"
运行我们的图。
messages = [{"type": "user", "content": "what's the latest news about FooBar"}]
config = {"configurable": {"thread_id": "1", "user_id": "1"}}
for chunk in graph.stream({"messages": messages}, config, stream_mode="values"):
chunk["messages"][-1].pretty_print()
================================[1m Human Message [0m=================================
what's the latest news about FooBar
==================================[1m Ai Message [0m==================================
Tool Calls:
get_context (call_ocyHBpGgF3LPFOgRKURBfkGG)
Call ID: call_ocyHBpGgF3LPFOgRKURBfkGG
Args:
question: latest news about FooBar
=================================[1m Tool Message [0m=================================
Name: get_context
FooBar company just raised 1 Billion dollars!
==================================[1m Ai Message [0m==================================
The latest news about FooBar is that the company has just raised 1 billion dollars.
messages = [{"type": "user", "content": "what's the latest news about FooBar"}]
config = {"configurable": {"thread_id": "2", "user_id": "2"}}
for chunk in graph.stream({"messages": messages}, config, stream_mode="values"):
chunk["messages"][-1].pretty_print()
================================[1m Human Message [0m=================================
what's the latest news about FooBar
==================================[1m Ai Message [0m==================================
Tool Calls:
get_context (call_zxO9KVlL8UxFQUMb8ETeHNvs)
Call ID: call_zxO9KVlL8UxFQUMb8ETeHNvs
Args:
question: latest news about FooBar
=================================[1m Tool Message [0m=================================
Name: get_context
FooBar company was founded in 2019
==================================[1m Ai Message [0m==================================
FooBar company was founded in 2019. If you need more specific or recent news, please let me know!