🚀 LangGraph 快速入门¶
在本教程中,我们将构建一个 LangGraph 中的支持聊天机器人,它可以
✅ 通过搜索网络回答常见问题
✅ 跨会话维护对话状态
✅ 将复杂查询路由给人工审核
✅ 使用自定义状态来控制其行为
✅ 回溯和探索替代对话路径
我们将从一个基本的聊天机器人开始,逐步添加更复杂的功能,并在此过程中介绍关键的 LangGraph 概念。让我们开始吧!🌟
设置¶
首先,安装所需的软件包并配置您的环境
import getpass
import os
def _set_env(var: str):
if not os.environ.get(var):
os.environ[var] = getpass.getpass(f"{var}: ")
_set_env("ANTHROPIC_API_KEY")
设置 LangSmith 以进行 LangGraph 开发
注册 LangSmith 以快速发现问题并提高 LangGraph 项目的性能。LangSmith 允许您使用跟踪数据来调试、测试和监控使用 LangGraph 构建的 LLM 应用程序 —— 在此处阅读更多关于如何开始的信息。
第一部分:构建一个基本的聊天机器人¶
我们首先使用 LangGraph 创建一个简单的聊天机器人。这个聊天机器人将直接回复用户消息。虽然简单,但它将说明使用 LangGraph 构建的核心概念。在本节结束时,您将构建一个基本的聊天机器人。
首先创建一个 StateGraph
。StateGraph
对象将我们的聊天机器人的结构定义为一个“状态机”。我们将添加 nodes
来表示 llm 和我们的聊天机器人可以调用的函数,以及 edges
来指定机器人应如何在这些函数之间转换。
from typing import Annotated
from typing_extensions import TypedDict
from langgraph.graph import StateGraph, START, END
from langgraph.graph.message import add_messages
class State(TypedDict):
# Messages have the type "list". The `add_messages` function
# in the annotation defines how this state key should be updated
# (in this case, it appends messages to the list, rather than overwriting them)
messages: Annotated[list, add_messages]
graph_builder = StateGraph(State)
API 参考:StateGraph | START | END | add_messages
我们的图现在可以处理两个关键任务
- 每个
node
都可以接收当前的State
作为输入,并输出状态的更新。 - 由于与
Annotated
语法一起使用的预构建add_messages
函数,对messages
的更新将附加到现有列表,而不是覆盖它。
概念
在定义图时,第一步是定义其 State
。State
包括图的模式和处理状态更新的 reducer 函数。在我们的示例中,State
是一个 TypedDict
,其中包含一个键:messages
。add_messages
reducer 函数用于将新消息附加到列表中,而不是覆盖它。没有 reducer 注释的键将覆盖先前的值。在 本指南中了解有关状态、reducer 和相关概念的更多信息。
接下来,添加一个“chatbot
”节点。节点表示工作单元。它们通常是常规的 python 函数。
from langchain_anthropic import ChatAnthropic
llm = ChatAnthropic(model="claude-3-5-sonnet-20240620")
def chatbot(state: State):
return {"messages": [llm.invoke(state["messages"])]}
# The first argument is the unique node name
# The second argument is the function or object that will be called whenever
# the node is used.
graph_builder.add_node("chatbot", chatbot)
API 参考:ChatAnthropic
注意 chatbot
节点函数如何将当前 State
作为输入,并返回一个字典,该字典包含一个在键“messages”下更新的 messages
列表。这是所有 LangGraph 节点函数的基本模式。
我们 State
中的 add_messages
函数会将 llm 的响应消息附加到状态中已有的任何消息中。
接下来,添加一个 entry
点。这告诉我们的图每次我们运行它时从哪里开始工作。
类似地,设置一个 finish
点。这指示图“任何时候运行此节点,您都可以退出。”
最后,我们将希望能够运行我们的图。为此,请在图构建器上调用“compile()
”。这将创建一个“CompiledGraph
”,我们可以使用它在我们的状态上调用。
您可以使用 get_graph
方法和“draw”方法之一(如 draw_ascii
或 draw_png
)可视化图。draw
方法都各自需要额外的依赖项。
from IPython.display import Image, display
try:
display(Image(graph.get_graph().draw_mermaid_png()))
except Exception:
# This requires some extra dependencies and is optional
pass
现在让我们运行聊天机器人!
提示: 您可以随时通过键入“quit”、“exit”或“q”退出聊天循环。
def stream_graph_updates(user_input: str):
for event in graph.stream({"messages": [{"role": "user", "content": user_input}]}):
for value in event.values():
print("Assistant:", value["messages"][-1].content)
while True:
try:
user_input = input("User: ")
if user_input.lower() in ["quit", "exit", "q"]:
print("Goodbye!")
break
stream_graph_updates(user_input)
except:
# fallback if input() is not available
user_input = "What do you know about LangGraph?"
print("User: " + user_input)
stream_graph_updates(user_input)
break
Assistant: LangGraph is a library designed to help build stateful multi-agent applications using language models. It provides tools for creating workflows and state machines to coordinate multiple AI agents or language model interactions. LangGraph is built on top of LangChain, leveraging its components while adding graph-based coordination capabilities. It's particularly useful for developing more complex, stateful AI applications that go beyond simple query-response interactions.
Goodbye!
但是,您可能已经注意到,机器人的知识仅限于其训练数据中的内容。在下一部分中,我们将添加一个网络搜索工具,以扩展机器人的知识并使其更强大。
以下是本节的完整代码,供您参考
完整代码
API Reference: ChatAnthropic | StateGraph | add_messagesfrom typing import Annotated from langchain_anthropic import ChatAnthropic from typing_extensions import TypedDict from langgraph.graph import StateGraph from langgraph.graph.message import add_messages class State(TypedDict): messages: Annotated[list, add_messages] graph_builder = StateGraph(State) llm = ChatAnthropic(model="claude-3-5-sonnet-20240620") def chatbot(state: State): return {"messages": [llm.invoke(state["messages"])]} # The first argument is the unique node name # The second argument is the function or object that will be called whenever # the node is used. graph_builder.add_node("chatbot", chatbot) graph_builder.set_entry_point("chatbot") graph_builder.set_finish_point("chatbot") graph = graph_builder.compile()
第二部分:🛠️ 使用工具增强聊天机器人¶
为了处理我们的聊天机器人无法“从记忆中”回答的查询,我们将集成一个网络搜索工具。我们的机器人可以使用此工具查找相关信息并提供更好的响应。
要求¶
在开始之前,请确保您已安装必要的软件包并设置了 API 密钥
首先,安装使用 Tavily 搜索引擎的要求,并设置您的 TAVILY_API_KEY。
接下来,定义工具from langchain_community.tools.tavily_search import TavilySearchResults
tool = TavilySearchResults(max_results=2)
tools = [tool]
tool.invoke("What's a 'node' in LangGraph?")
API 参考:TavilySearchResults
[{'url': 'https://medium.com/@cplog/introduction-to-langgraph-a-beginners-guide-14f9be027141',
'content': 'Nodes: Nodes are the building blocks of your LangGraph. Each node represents a function or a computation step. You define nodes to perform specific tasks, such as processing input, making ...'},
{'url': 'https://saksheepatil05.medium.com/demystifying-langgraph-a-beginner-friendly-dive-into-langgraph-concepts-5ffe890ddac0',
'content': 'Nodes (Tasks): Nodes are like the workstations on the assembly line. Each node performs a specific task on the product. In LangGraph, nodes are Python functions that take the current state, do some work, and return an updated state. Next, we define the nodes, each representing a task in our sandwich-making process.'}]
结果是我们的聊天机器人可以用来回答问题的页面摘要。
接下来,我们将开始定义我们的图。以下内容与第一部分中的内容完全相同,只是我们在 LLM 上添加了 bind_tools
。这让 LLM 知道如果它想使用我们的搜索引擎,应该使用的正确 JSON 格式。
from typing import Annotated
from langchain_anthropic import ChatAnthropic
from typing_extensions import TypedDict
from langgraph.graph import StateGraph, START, END
from langgraph.graph.message import add_messages
class State(TypedDict):
messages: Annotated[list, add_messages]
graph_builder = StateGraph(State)
llm = ChatAnthropic(model="claude-3-5-sonnet-20240620")
# Modification: tell the LLM which tools it can call
llm_with_tools = llm.bind_tools(tools)
def chatbot(state: State):
return {"messages": [llm_with_tools.invoke(state["messages"])]}
graph_builder.add_node("chatbot", chatbot)
API 参考:ChatAnthropic | StateGraph | START | END | add_messages
接下来,我们需要创建一个函数来实际运行工具(如果它们被调用)。我们将通过将工具添加到新节点来做到这一点。
下面,我们实现了一个 BasicToolNode
,它检查状态中的最新消息,并在消息包含 tool_calls
时调用工具。它依赖于 LLM 的 tool_calling
支持,这在 Anthropic、OpenAI、Google Gemini 和许多其他 LLM 提供商中都可用。
稍后我们将用 LangGraph 的预构建 ToolNode 替换它以加快速度,但首先自己构建它会更具指导意义。
import json
from langchain_core.messages import ToolMessage
class BasicToolNode:
"""A node that runs the tools requested in the last AIMessage."""
def __init__(self, tools: list) -> None:
self.tools_by_name = {tool.name: tool for tool in tools}
def __call__(self, inputs: dict):
if messages := inputs.get("messages", []):
message = messages[-1]
else:
raise ValueError("No message found in input")
outputs = []
for tool_call in message.tool_calls:
tool_result = self.tools_by_name[tool_call["name"]].invoke(
tool_call["args"]
)
outputs.append(
ToolMessage(
content=json.dumps(tool_result),
name=tool_call["name"],
tool_call_id=tool_call["id"],
)
)
return {"messages": outputs}
tool_node = BasicToolNode(tools=[tool])
graph_builder.add_node("tools", tool_node)
API 参考:ToolMessage
添加工具节点后,我们可以定义 conditional_edges
。
回想一下,edges 将控制流从一个节点路由到下一个节点。条件边通常包含“if”语句,以根据当前图状态路由到不同的节点。这些函数接收当前的图 state
,并返回一个字符串或字符串列表,指示接下来要调用的节点。
下面,调用定义一个名为 route_tools
的路由器函数,该函数检查聊天机器人的输出中是否存在 tool_calls。通过调用 add_conditional_edges
将此函数提供给图,这告诉图,每当 chatbot
节点完成时,检查此函数以查看接下来要去哪里。
如果存在工具调用,则条件将路由到 tools
,否则路由到 END
。
稍后,我们将用预构建的 tools_condition 替换它,以使其更简洁,但首先自己实现它会使事情更清楚。
def route_tools(
state: State,
):
"""
Use in the conditional_edge to route to the ToolNode if the last message
has tool calls. Otherwise, route to the end.
"""
if isinstance(state, list):
ai_message = state[-1]
elif messages := state.get("messages", []):
ai_message = messages[-1]
else:
raise ValueError(f"No messages found in input state to tool_edge: {state}")
if hasattr(ai_message, "tool_calls") and len(ai_message.tool_calls) > 0:
return "tools"
return END
# The `tools_condition` function returns "tools" if the chatbot asks to use a tool, and "END" if
# it is fine directly responding. This conditional routing defines the main agent loop.
graph_builder.add_conditional_edges(
"chatbot",
route_tools,
# The following dictionary lets you tell the graph to interpret the condition's outputs as a specific node
# It defaults to the identity function, but if you
# want to use a node named something else apart from "tools",
# You can update the value of the dictionary to something else
# e.g., "tools": "my_tools"
{"tools": "tools", END: END},
)
# Any time a tool is called, we return to the chatbot to decide the next step
graph_builder.add_edge("tools", "chatbot")
graph_builder.add_edge(START, "chatbot")
graph = graph_builder.compile()
注意 条件边从单个节点开始。这告诉图“任何时候 'chatbot
' 节点运行时,如果它调用了工具,则转到 'tools',或者如果它直接响应,则结束循环。
像预构建的 tools_condition
一样,我们的函数在未进行工具调用时返回 END
字符串。当图转换到 END
时,它没有更多要完成的任务并停止执行。由于条件可以返回 END
,因此这次我们不需要显式设置 finish_point
。我们的图已经有一种完成的方式!
让我们可视化我们构建的图。以下函数有一些额外的依赖项才能运行,这些依赖项对于本教程来说并不重要。
from IPython.display import Image, display
try:
display(Image(graph.get_graph().draw_mermaid_png()))
except Exception:
# This requires some extra dependencies and is optional
pass
现在我们可以向机器人询问其训练数据之外的问题了。
while True:
try:
user_input = input("User: ")
if user_input.lower() in ["quit", "exit", "q"]:
print("Goodbye!")
break
stream_graph_updates(user_input)
except:
# fallback if input() is not available
user_input = "What do you know about LangGraph?"
print("User: " + user_input)
stream_graph_updates(user_input)
break
Assistant: [{'text': "To provide you with accurate and up-to-date information about LangGraph, I'll need to search for the latest details. Let me do that for you.", 'type': 'text'}, {'id': 'toolu_01Q588CszHaSvvP2MxRq9zRD', 'input': {'query': 'LangGraph AI tool information'}, 'name': 'tavily_search_results_json', 'type': 'tool_use'}]
Assistant: [{"url": "https://langchain.ac.cn/langgraph", "content": "LangGraph sets the foundation for how we can build and scale AI workloads \u2014 from conversational agents, complex task automation, to custom LLM-backed experiences that 'just work'. The next chapter in building complex production-ready features with LLMs is agentic, and with LangGraph and LangSmith, LangChain delivers an out-of-the-box solution ..."}, {"url": "https://github.com/langchain-ai/langgraph", "content": "Overview. LangGraph is a library for building stateful, multi-actor applications with LLMs, used to create agent and multi-agent workflows. Compared to other LLM frameworks, it offers these core benefits: cycles, controllability, and persistence. LangGraph allows you to define flows that involve cycles, essential for most agentic architectures ..."}]
Assistant: Based on the search results, I can provide you with information about LangGraph:
1. Purpose:
LangGraph is a library designed for building stateful, multi-actor applications with Large Language Models (LLMs). It's particularly useful for creating agent and multi-agent workflows.
2. Developer:
LangGraph is developed by LangChain, a company known for its tools and frameworks in the AI and LLM space.
3. Key Features:
- Cycles: LangGraph allows the definition of flows that involve cycles, which is essential for most agentic architectures.
- Controllability: It offers enhanced control over the application flow.
- Persistence: The library provides ways to maintain state and persistence in LLM-based applications.
4. Use Cases:
LangGraph can be used for various applications, including:
- Conversational agents
- Complex task automation
- Custom LLM-backed experiences
5. Integration:
LangGraph works in conjunction with LangSmith, another tool by LangChain, to provide an out-of-the-box solution for building complex, production-ready features with LLMs.
6. Significance:
LangGraph is described as setting the foundation for building and scaling AI workloads. It's positioned as a key tool in the next chapter of LLM-based application development, particularly in the realm of agentic AI.
7. Availability:
LangGraph is open-source and available on GitHub, which suggests that developers can access and contribute to its codebase.
8. Comparison to Other Frameworks:
LangGraph is noted to offer unique benefits compared to other LLM frameworks, particularly in its ability to handle cycles, provide controllability, and maintain persistence.
LangGraph appears to be a significant tool in the evolving landscape of LLM-based application development, offering developers new ways to create more complex, stateful, and interactive AI systems.
Goodbye!
我们的聊天机器人仍然无法自行记住过去的交互,这限制了其进行连贯的多轮对话的能力。在下一部分中,我们将添加记忆来解决这个问题。
以下重现了本节中我们创建的图的完整代码,用预构建的 ToolNode 替换了我们的 BasicToolNode
,并用预构建的 tools_condition 替换了我们的 route_tools
条件
完整代码
API Reference: ChatAnthropic | TavilySearchResults | BaseMessage | StateGraph | add_messages | ToolNode | tools_conditionfrom typing import Annotated from langchain_anthropic import ChatAnthropic from langchain_community.tools.tavily_search import TavilySearchResults from langchain_core.messages import BaseMessage from typing_extensions import TypedDict from langgraph.graph import StateGraph from langgraph.graph.message import add_messages from langgraph.prebuilt import ToolNode, tools_condition class State(TypedDict): messages: Annotated[list, add_messages] graph_builder = StateGraph(State) tool = TavilySearchResults(max_results=2) tools = [tool] llm = ChatAnthropic(model="claude-3-5-sonnet-20240620") llm_with_tools = llm.bind_tools(tools) def chatbot(state: State): return {"messages": [llm_with_tools.invoke(state["messages"])]} graph_builder.add_node("chatbot", chatbot) tool_node = ToolNode(tools=[tool]) graph_builder.add_node("tools", tool_node) graph_builder.add_conditional_edges( "chatbot", tools_condition, ) # Any time a tool is called, we return to the chatbot to decide the next step graph_builder.add_edge("tools", "chatbot") graph_builder.set_entry_point("chatbot") graph = graph_builder.compile()
第三部分:为聊天机器人添加记忆¶
我们的聊天机器人现在可以使用工具来回答用户问题,但它不记得先前交互的上下文。这限制了其进行连贯的多轮对话的能力。
LangGraph 通过持久性检查点解决了这个问题。如果您在编译图时提供 checkpointer
,并在调用图时提供 thread_id
,则 LangGraph 会在每个步骤后自动保存状态。当您使用相同的 thread_id
再次调用图时,图会加载其保存的状态,从而允许聊天机器人从上次停止的地方继续。
我们稍后将看到,检查点比简单的聊天记忆强大得多 - 它允许您随时保存和恢复复杂状态,以便进行错误恢复、人机协作工作流程、时间旅行交互等等。但在我们过于超前之前,让我们添加检查点以启用多轮对话。
首先,创建一个 MemorySaver
检查点。
API 参考:MemorySaver
注意 我们正在使用内存中的检查点。这对于我们的教程来说很方便(它将所有内容保存在内存中)。在生产应用程序中,您可能会将其更改为使用 SqliteSaver
或 PostgresSaver
并连接到您自己的 DB。
接下来定义图。既然您已经构建了自己的 BasicToolNode
,我们将用 LangGraph 的预构建 ToolNode
和 tools_condition
替换它,因为这些工具做了一些不错的事情,例如并行 API 执行。除此之外,以下所有内容都从第二部分复制而来。
from typing import Annotated
from langchain_anthropic import ChatAnthropic
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_core.messages import BaseMessage
from typing_extensions import TypedDict
from langgraph.graph import StateGraph, START, END
from langgraph.graph.message import add_messages
from langgraph.prebuilt import ToolNode, tools_condition
class State(TypedDict):
messages: Annotated[list, add_messages]
graph_builder = StateGraph(State)
tool = TavilySearchResults(max_results=2)
tools = [tool]
llm = ChatAnthropic(model="claude-3-5-sonnet-20240620")
llm_with_tools = llm.bind_tools(tools)
def chatbot(state: State):
return {"messages": [llm_with_tools.invoke(state["messages"])]}
graph_builder.add_node("chatbot", chatbot)
tool_node = ToolNode(tools=[tool])
graph_builder.add_node("tools", tool_node)
graph_builder.add_conditional_edges(
"chatbot",
tools_condition,
)
# Any time a tool is called, we return to the chatbot to decide the next step
graph_builder.add_edge("tools", "chatbot")
graph_builder.add_edge(START, "chatbot")
API 参考:ChatAnthropic | TavilySearchResults | BaseMessage | StateGraph | START | END | add_messages | ToolNode | tools_condition
最后,使用提供的检查点编译图。
请注意,自第二部分以来,图的连接性没有改变。我们所做的只是在图遍历每个节点时检查点 State
。
from IPython.display import Image, display
try:
display(Image(graph.get_graph().draw_mermaid_png()))
except Exception:
# This requires some extra dependencies and is optional
pass
现在您可以与您的机器人互动了!首先,选择一个线程用作此对话的键。
接下来,调用您的聊天机器人。
user_input = "Hi there! My name is Will."
# The config is the **second positional argument** to stream() or invoke()!
events = graph.stream(
{"messages": [{"role": "user", "content": user_input}]},
config,
stream_mode="values",
)
for event in events:
event["messages"][-1].pretty_print()
================================[1m Human Message [0m=================================
Hi there! My name is Will.
==================================[1m Ai Message [0m==================================
Hello Will! It's nice to meet you. How can I assist you today? Is there anything specific you'd like to know or discuss?
{'messages': []}
)。
让我们问一个后续问题:看看它是否记得你的名字。
user_input = "Remember my name?"
# The config is the **second positional argument** to stream() or invoke()!
events = graph.stream(
{"messages": [{"role": "user", "content": user_input}]},
config,
stream_mode="values",
)
for event in events:
event["messages"][-1].pretty_print()
================================[1m Human Message [0m=================================
Remember my name?
==================================[1m Ai Message [0m==================================
Of course, I remember your name, Will. I always try to pay attention to important details that users share with me. Is there anything else you'd like to talk about or any questions you have? I'm here to help with a wide range of topics or tasks.
不相信我?使用不同的 config 尝试一下。
# The only difference is we change the `thread_id` here to "2" instead of "1"
events = graph.stream(
{"messages": [{"role": "user", "content": user_input}]},
{"configurable": {"thread_id": "2"}},
stream_mode="values",
)
for event in events:
event["messages"][-1].pretty_print()
================================[1m Human Message [0m=================================
Remember my name?
==================================[1m Ai Message [0m==================================
I apologize, but I don't have any previous context or memory of your name. As an AI assistant, I don't retain information from past conversations. Each interaction starts fresh. Could you please tell me your name so I can address you properly in this conversation?
thread_id
。请参阅此调用的 LangSmith 跟踪进行比较。
到目前为止,我们已经在两个不同的线程中进行了几个检查点。但是检查点中包含什么?要随时检查给定 config 的图的 state
,请调用 get_state(config)
。
StateSnapshot(values={'messages': [HumanMessage(content='Hi there! My name is Will.', additional_kwargs={}, response_metadata={}, id='8c1ca919-c553-4ebf-95d4-b59a2d61e078'), AIMessage(content="Hello Will! It's nice to meet you. How can I assist you today? Is there anything specific you'd like to know or discuss?", additional_kwargs={}, response_metadata={'id': 'msg_01WTQebPhNwmMrmmWojJ9KXJ', 'model': 'claude-3-5-sonnet-20240620', 'stop_reason': 'end_turn', 'stop_sequence': None, 'usage': {'input_tokens': 405, 'output_tokens': 32}}, id='run-58587b77-8c82-41e6-8a90-d62c444a261d-0', usage_metadata={'input_tokens': 405, 'output_tokens': 32, 'total_tokens': 437}), HumanMessage(content='Remember my name?', additional_kwargs={}, response_metadata={}, id='daba7df6-ad75-4d6b-8057-745881cea1ca'), AIMessage(content="Of course, I remember your name, Will. I always try to pay attention to important details that users share with me. Is there anything else you'd like to talk about or any questions you have? I'm here to help with a wide range of topics or tasks.", additional_kwargs={}, response_metadata={'id': 'msg_01E41KitY74HpENRgXx94vag', 'model': 'claude-3-5-sonnet-20240620', 'stop_reason': 'end_turn', 'stop_sequence': None, 'usage': {'input_tokens': 444, 'output_tokens': 58}}, id='run-ffeaae5c-4d2d-4ddb-bd59-5d5cbf2a5af8-0', usage_metadata={'input_tokens': 444, 'output_tokens': 58, 'total_tokens': 502})]}, next=(), config={'configurable': {'thread_id': '1', 'checkpoint_ns': '', 'checkpoint_id': '1ef7d06e-93e0-6acc-8004-f2ac846575d2'}}, metadata={'source': 'loop', 'writes': {'chatbot': {'messages': [AIMessage(content="Of course, I remember your name, Will. I always try to pay attention to important details that users share with me. Is there anything else you'd like to talk about or any questions you have? I'm here to help with a wide range of topics or tasks.", additional_kwargs={}, response_metadata={'id': 'msg_01E41KitY74HpENRgXx94vag', 'model': 'claude-3-5-sonnet-20240620', 'stop_reason': 'end_turn', 'stop_sequence': None, 'usage': {'input_tokens': 444, 'output_tokens': 58}}, id='run-ffeaae5c-4d2d-4ddb-bd59-5d5cbf2a5af8-0', usage_metadata={'input_tokens': 444, 'output_tokens': 58, 'total_tokens': 502})]}}, 'step': 4, 'parents': {}}, created_at='2024-09-27T19:30:10.820758+00:00', parent_config={'configurable': {'thread_id': '1', 'checkpoint_ns': '', 'checkpoint_id': '1ef7d06e-859f-6206-8003-e1bd3c264b8f'}}, tasks=())
snapshot.next # (since the graph ended this turn, `next` is empty. If you fetch a state from within a graph invocation, next tells which node will execute next)
上面的快照包含当前状态值、相应的 config 以及要处理的 next
节点。在我们的例子中,图已达到 END
状态,因此 next
为空。
恭喜! 借助 LangGraph 的检查点系统,您的聊天机器人现在可以跨会话维护对话状态。这为更自然、更具上下文的交互开辟了令人兴奋的可能性。LangGraph 的检查点甚至可以处理任意复杂的图状态,这比简单的聊天记忆更具表现力和强大功能。
在下一部分中,我们将向我们的机器人引入人工监督,以处理可能需要指导或验证才能继续进行的情况。
查看下面的代码片段以回顾本节中的图。
完整代码
API Reference: ChatAnthropic | TavilySearchResults | BaseMessage | MemorySaver | StateGraph | add_messages | ToolNodefrom typing import Annotated from langchain_anthropic import ChatAnthropic from langchain_community.tools.tavily_search import TavilySearchResults from langchain_core.messages import BaseMessage from typing_extensions import TypedDict from langgraph.checkpoint.memory import MemorySaver from langgraph.graph import StateGraph from langgraph.graph.message import add_messages from langgraph.prebuilt import ToolNode class State(TypedDict): messages: Annotated[list, add_messages] graph_builder = StateGraph(State) tool = TavilySearchResults(max_results=2) tools = [tool] llm = ChatAnthropic(model="claude-3-5-sonnet-20240620") llm_with_tools = llm.bind_tools(tools) def chatbot(state: State): return {"messages": [llm_with_tools.invoke(state["messages"])]} graph_builder.add_node("chatbot", chatbot) tool_node = ToolNode(tools=[tool]) graph_builder.add_node("tools", tool_node) graph_builder.add_conditional_edges( "chatbot", tools_condition, ) graph_builder.add_edge("tools", "chatbot") graph_builder.set_entry_point("chatbot") memory = MemorySaver() graph = graph_builder.compile(checkpointer=memory)
第四部分:人机协作¶
代理可能不可靠,可能需要人工输入才能成功完成任务。同样,对于某些操作,您可能希望在运行之前需要人工批准,以确保一切按预期运行。
LangGraph 的 持久性层支持人机协作工作流程,允许执行根据用户反馈暂停和恢复。此功能的主要接口是 interrupt 函数。在节点内部调用 interrupt
将暂停执行。可以通过传入 Command 来恢复执行,以及来自人工的新输入。interrupt
在人体工程学上类似于 Python 的内置 input()
,有一些注意事项。我们在下面演示一个示例。
首先,从我们在第三部分中的现有代码开始。我们将做一个更改,即添加一个聊天机器人可以访问的简单 human_assistance
工具。此工具使用 interrupt
接收来自人工的信息。
from typing import Annotated
from langchain_anthropic import ChatAnthropic
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_core.tools import tool
from typing_extensions import TypedDict
from langgraph.checkpoint.memory import MemorySaver
from langgraph.graph import StateGraph, START, END
from langgraph.graph.message import add_messages
from langgraph.prebuilt import ToolNode, tools_condition
from langgraph.types import Command, interrupt
class State(TypedDict):
messages: Annotated[list, add_messages]
graph_builder = StateGraph(State)
@tool
def human_assistance(query: str) -> str:
"""Request assistance from a human."""
human_response = interrupt({"query": query})
return human_response["data"]
tool = TavilySearchResults(max_results=2)
tools = [tool, human_assistance]
llm = ChatAnthropic(model="claude-3-5-sonnet-20240620")
llm_with_tools = llm.bind_tools(tools)
def chatbot(state: State):
message = llm_with_tools.invoke(state["messages"])
# Because we will be interrupting during tool execution,
# we disable parallel tool calling to avoid repeating any
# tool invocations when we resume.
assert len(message.tool_calls) <= 1
return {"messages": [message]}
graph_builder.add_node("chatbot", chatbot)
tool_node = ToolNode(tools=tools)
graph_builder.add_node("tools", tool_node)
graph_builder.add_conditional_edges(
"chatbot",
tools_condition,
)
graph_builder.add_edge("tools", "chatbot")
graph_builder.add_edge(START, "chatbot")
API 参考:ChatAnthropic | TavilySearchResults | tool | MemorySaver | StateGraph | START | END | add_messages | ToolNode | tools_condition | Command | interrupt
提示
查看操作指南的人机协作部分,了解更多人机协作工作流程的示例,包括如何在工具调用执行之前对其进行审查和编辑。
我们像以前一样使用检查点编译图
可视化图,我们恢复了与之前相同的布局。我们刚刚添加了一个工具!
from IPython.display import Image, display
try:
display(Image(graph.get_graph().draw_mermaid_png()))
except Exception:
# This requires some extra dependencies and is optional
pass
现在让我们用一个会调用新的 human_assistance
工具的问题来提示聊天机器人
user_input = "I need some expert guidance for building an AI agent. Could you request assistance for me?"
config = {"configurable": {"thread_id": "1"}}
events = graph.stream(
{"messages": [{"role": "user", "content": user_input}]},
config,
stream_mode="values",
)
for event in events:
if "messages" in event:
event["messages"][-1].pretty_print()
================================[1m Human Message [0m=================================
I need some expert guidance for building an AI agent. Could you request assistance for me?
==================================[1m Ai Message [0m==================================
[{'text': "Certainly! I'd be happy to request expert assistance for you regarding building an AI agent. To do this, I'll use the human_assistance function to relay your request. Let me do that for you now.", 'type': 'text'}, {'id': 'toolu_01ABUqneqnuHNuo1vhfDFQCW', 'input': {'query': 'A user is requesting expert guidance for building an AI agent. Could you please provide some expert advice or resources on this topic?'}, 'name': 'human_assistance', 'type': 'tool_use'}]
Tool Calls:
human_assistance (toolu_01ABUqneqnuHNuo1vhfDFQCW)
Call ID: toolu_01ABUqneqnuHNuo1vhfDFQCW
Args:
query: A user is requesting expert guidance for building an AI agent. Could you please provide some expert advice or resources on this topic?
让我们仔细看看 human_assistance
工具
@tool
def human_assistance(query: str) -> str:
"""Request assistance from a human."""
human_response = interrupt({"query": query})
return human_response["data"]
与 Python 的内置 input()
函数类似,在工具内部调用 interrupt
将暂停执行。进度会根据我们对 检查点 的选择进行持久化——因此,如果我们使用 Postgres 进行持久化,只要数据库处于活动状态,我们就可以随时恢复。这里我们使用内存中的检查点进行持久化,因此只要我们的 Python 内核正在运行,我们就可以随时恢复。
要恢复执行,我们传递一个 Command 对象,其中包含工具期望的数据。此数据的格式可以根据我们的需要进行自定义。在这里,我们只需要一个带有键 "data"
的 dict
human_response = (
"We, the experts are here to help! We'd recommend you check out LangGraph to build your agent."
" It's much more reliable and extensible than simple autonomous agents."
)
human_command = Command(resume={"data": human_response})
events = graph.stream(human_command, config, stream_mode="values")
for event in events:
if "messages" in event:
event["messages"][-1].pretty_print()
==================================[1m Ai Message [0m==================================
[{'text': "Certainly! I'd be happy to request expert assistance for you regarding building an AI agent. To do this, I'll use the human_assistance function to relay your request. Let me do that for you now.", 'type': 'text'}, {'id': 'toolu_01ABUqneqnuHNuo1vhfDFQCW', 'input': {'query': 'A user is requesting expert guidance for building an AI agent. Could you please provide some expert advice or resources on this topic?'}, 'name': 'human_assistance', 'type': 'tool_use'}]
Tool Calls:
human_assistance (toolu_01ABUqneqnuHNuo1vhfDFQCW)
Call ID: toolu_01ABUqneqnuHNuo1vhfDFQCW
Args:
query: A user is requesting expert guidance for building an AI agent. Could you please provide some expert advice or resources on this topic?
=================================[1m Tool Message [0m=================================
Name: human_assistance
We, the experts are here to help! We'd recommend you check out LangGraph to build your agent. It's much more reliable and extensible than simple autonomous agents.
==================================[1m Ai Message [0m==================================
Thank you for your patience. I've received some expert advice regarding your request for guidance on building an AI agent. Here's what the experts have suggested:
The experts recommend that you look into LangGraph for building your AI agent. They mention that LangGraph is a more reliable and extensible option compared to simple autonomous agents.
LangGraph is likely a framework or library designed specifically for creating AI agents with advanced capabilities. Here are a few points to consider based on this recommendation:
1. Reliability: The experts emphasize that LangGraph is more reliable than simpler autonomous agent approaches. This could mean it has better stability, error handling, or consistent performance.
2. Extensibility: LangGraph is described as more extensible, which suggests that it probably offers a flexible architecture that allows you to easily add new features or modify existing ones as your agent's requirements evolve.
3. Advanced capabilities: Given that it's recommended over "simple autonomous agents," LangGraph likely provides more sophisticated tools and techniques for building complex AI agents.
To get started with LangGraph, you might want to:
1. Search for the official LangGraph documentation or website to learn more about its features and how to use it.
2. Look for tutorials or guides specifically focused on building AI agents with LangGraph.
3. Check if there are any community forums or discussion groups where you can ask questions and get support from other developers using LangGraph.
If you'd like more specific information about LangGraph or have any questions about this recommendation, please feel free to ask, and I can request further assistance from the experts.
恭喜! 您已经使用 interrupt
向您的聊天机器人添加了人机协作执行,从而允许在需要时进行人工监督和干预。这为您可以使用 AI 系统创建的潜在 UI 开辟了道路。由于我们已经添加了检查点,只要底层持久性层正在运行,图就可以无限期暂停,并随时恢复,就像什么都没发生过一样。
人机协作工作流程支持各种新的工作流程和用户体验。查看操作指南的 此部分,了解更多人机协作工作流程的示例,包括如何在工具调用执行之前对其进行审查和编辑。
完整代码
API Reference: ChatAnthropic | TavilySearchResults | tool | MemorySaver | StateGraph | START | END | add_messages | ToolNode | tools_condition | Command | interruptfrom typing import Annotated from langchain_anthropic import ChatAnthropic from langchain_community.tools.tavily_search import TavilySearchResults from langchain_core.tools import tool from typing_extensions import TypedDict from langgraph.checkpoint.memory import MemorySaver from langgraph.graph import StateGraph, START, END from langgraph.graph.message import add_messages from langgraph.prebuilt import ToolNode, tools_condition from langgraph.types import Command, interrupt class State(TypedDict): messages: Annotated[list, add_messages] graph_builder = StateGraph(State) @tool def human_assistance(query: str) -> str: """Request assistance from a human.""" human_response = interrupt({"query": query}) return human_response["data"] tool = TavilySearchResults(max_results=2) tools = [tool, human_assistance] llm = ChatAnthropic(model="claude-3-5-sonnet-20240620") llm_with_tools = llm.bind_tools(tools) def chatbot(state: State): message = llm_with_tools.invoke(state["messages"]) assert(len(message.tool_calls) <= 1) return {"messages": [message]} graph_builder.add_node("chatbot", chatbot) tool_node = ToolNode(tools=tools) graph_builder.add_node("tools", tool_node) graph_builder.add_conditional_edges( "chatbot", tools_condition, ) graph_builder.add_edge("tools", "chatbot") graph_builder.add_edge(START, "chatbot") memory = MemorySaver() graph = graph_builder.compile(checkpointer=memory)
第五部分:自定义状态¶
到目前为止,我们一直依赖于一个简单的状态,其中包含一个条目——消息列表。您可以使用这个简单的状态做很多事情,但是如果您想定义复杂的行为而不依赖于消息列表,您可以向状态添加其他字段。在这里,我们将演示一种新场景,其中聊天机器人正在使用其搜索工具查找特定信息,并将其转发给人工审核。让聊天机器人研究实体的生日。我们将向状态添加 name
和 birthday
键
from typing import Annotated
from typing_extensions import TypedDict
from langgraph.graph.message import add_messages
class State(TypedDict):
messages: Annotated[list, add_messages]
name: str
birthday: str
API 参考:add_messages
将此信息添加到状态使其可以被其他图节点(例如,存储或处理信息的下游节点)以及图的持久性层轻松访问。
在这里,我们将在我们的 human_assistance
工具内部填充状态键。这允许人工在信息存储在状态之前对其进行审查。我们将再次使用 Command
,这次是从我们的工具内部发出状态更新。在此处阅读有关 Command
用例的更多信息 here。
from langchain_core.messages import ToolMessage
from langchain_core.tools import InjectedToolCallId, tool
from langgraph.types import Command, interrupt
@tool
# Note that because we are generating a ToolMessage for a state update, we
# generally require the ID of the corresponding tool call. We can use
# LangChain's InjectedToolCallId to signal that this argument should not
# be revealed to the model in the tool's schema.
def human_assistance(
name: str, birthday: str, tool_call_id: Annotated[str, InjectedToolCallId]
) -> str:
"""Request assistance from a human."""
human_response = interrupt(
{
"question": "Is this correct?",
"name": name,
"birthday": birthday,
},
)
# If the information is correct, update the state as-is.
if human_response.get("correct", "").lower().startswith("y"):
verified_name = name
verified_birthday = birthday
response = "Correct"
# Otherwise, receive information from the human reviewer.
else:
verified_name = human_response.get("name", name)
verified_birthday = human_response.get("birthday", birthday)
response = f"Made a correction: {human_response}"
# This time we explicitly update the state with a ToolMessage inside
# the tool.
state_update = {
"name": verified_name,
"birthday": verified_birthday,
"messages": [ToolMessage(response, tool_call_id=tool_call_id)],
}
# We return a Command object in the tool to update our state.
return Command(update=state_update)
API 参考:ToolMessage | InjectedToolCallId | tool | Command | interrupt
否则,我们图的其余部分是相同的
from langchain_anthropic import ChatAnthropic
from langchain_community.tools.tavily_search import TavilySearchResults
from langgraph.checkpoint.memory import MemorySaver
from langgraph.graph import StateGraph, START, END
from langgraph.prebuilt import ToolNode, tools_condition
tool = TavilySearchResults(max_results=2)
tools = [tool, human_assistance]
llm = ChatAnthropic(model="claude-3-5-sonnet-20240620")
llm_with_tools = llm.bind_tools(tools)
def chatbot(state: State):
message = llm_with_tools.invoke(state["messages"])
assert len(message.tool_calls) <= 1
return {"messages": [message]}
graph_builder = StateGraph(State)
graph_builder.add_node("chatbot", chatbot)
tool_node = ToolNode(tools=tools)
graph_builder.add_node("tools", tool_node)
graph_builder.add_conditional_edges(
"chatbot",
tools_condition,
)
graph_builder.add_edge("tools", "chatbot")
graph_builder.add_edge(START, "chatbot")
memory = MemorySaver()
graph = graph_builder.compile(checkpointer=memory)
API 参考:ChatAnthropic | TavilySearchResults | MemorySaver | StateGraph | START | END | ToolNode | tools_condition
让我们提示我们的应用程序查找 LangGraph 库的“生日”。我们将指示聊天机器人在获得所需信息后联系 human_assistance
工具。请注意,在工具的参数中设置 name
和 birthday
,我们强制聊天机器人生成这些字段的建议。
user_input = (
"Can you look up when LangGraph was released? "
"When you have the answer, use the human_assistance tool for review."
)
config = {"configurable": {"thread_id": "1"}}
events = graph.stream(
{"messages": [{"role": "user", "content": user_input}]},
config,
stream_mode="values",
)
for event in events:
if "messages" in event:
event["messages"][-1].pretty_print()
================================[1m Human Message [0m=================================
Can you look up when LangGraph was released? When you have the answer, use the human_assistance tool for review.
==================================[1m Ai Message [0m==================================
[{'text': "Certainly! I'll start by searching for information about LangGraph's release date using the Tavily search function. Then, I'll use the human_assistance tool for review.", 'type': 'text'}, {'id': 'toolu_01JoXQPgTVJXiuma8xMVwqAi', 'input': {'query': 'LangGraph release date'}, 'name': 'tavily_search_results_json', 'type': 'tool_use'}]
Tool Calls:
tavily_search_results_json (toolu_01JoXQPgTVJXiuma8xMVwqAi)
Call ID: toolu_01JoXQPgTVJXiuma8xMVwqAi
Args:
query: LangGraph release date
=================================[1m Tool Message [0m=================================
Name: tavily_search_results_json
[{"url": "https://blog.langchain.ac.cn/langgraph-cloud/", "content": "We also have a new stable release of LangGraph. By LangChain 6 min read Jun 27, 2024 (Oct '24) Edit: Since the launch of LangGraph Cloud, we now have multiple deployment options alongside LangGraph Studio - which now fall under LangGraph Platform. LangGraph Cloud is synonymous with our Cloud SaaS deployment option."}, {"url": "https://changelog.langchain.ac.cn/announcements/langgraph-cloud-deploy-at-scale-monitor-carefully-iterate-boldly", "content": "LangChain - Changelog | ☁ 🚀 LangGraph Cloud: Deploy at scale, monitor LangChain LangSmith LangGraph LangChain LangSmith LangGraph LangChain LangSmith LangGraph LangChain Changelog Sign up for our newsletter to stay up to date DATE: The LangChain Team LangGraph LangGraph Cloud ☁ 🚀 LangGraph Cloud: Deploy at scale, monitor carefully, iterate boldly DATE: June 27, 2024 AUTHOR: The LangChain Team LangGraph Cloud is now in closed beta, offering scalable, fault-tolerant deployment for LangGraph agents. LangGraph Cloud also includes a new playground-like studio for debugging agent failure modes and quick iteration: Join the waitlist today for LangGraph Cloud. And to learn more, read our blog post announcement or check out our docs. Subscribe By clicking subscribe, you accept our privacy policy and terms and conditions."}]
==================================[1m Ai Message [0m==================================
[{'text': "Based on the search results, it appears that LangGraph was already in existence before June 27, 2024, when LangGraph Cloud was announced. However, the search results don't provide a specific release date for the original LangGraph. \n\nGiven this information, I'll use the human_assistance tool to review and potentially provide more accurate information about LangGraph's initial release date.", 'type': 'text'}, {'id': 'toolu_01JDQAV7nPqMkHHhNs3j3XoN', 'input': {'name': 'Assistant', 'birthday': '2023-01-01'}, 'name': 'human_assistance', 'type': 'tool_use'}]
Tool Calls:
human_assistance (toolu_01JDQAV7nPqMkHHhNs3j3XoN)
Call ID: toolu_01JDQAV7nPqMkHHhNs3j3XoN
Args:
name: Assistant
birthday: 2023-01-01
human_assistance
工具中命中了 interrupt
。在这种情况下,聊天机器人未能识别出正确的日期,因此我们可以提供它
human_command = Command(
resume={
"name": "LangGraph",
"birthday": "Jan 17, 2024",
},
)
events = graph.stream(human_command, config, stream_mode="values")
for event in events:
if "messages" in event:
event["messages"][-1].pretty_print()
==================================[1m Ai Message [0m==================================
[{'text': "Based on the search results, it appears that LangGraph was already in existence before June 27, 2024, when LangGraph Cloud was announced. However, the search results don't provide a specific release date for the original LangGraph. \n\nGiven this information, I'll use the human_assistance tool to review and potentially provide more accurate information about LangGraph's initial release date.", 'type': 'text'}, {'id': 'toolu_01JDQAV7nPqMkHHhNs3j3XoN', 'input': {'name': 'Assistant', 'birthday': '2023-01-01'}, 'name': 'human_assistance', 'type': 'tool_use'}]
Tool Calls:
human_assistance (toolu_01JDQAV7nPqMkHHhNs3j3XoN)
Call ID: toolu_01JDQAV7nPqMkHHhNs3j3XoN
Args:
name: Assistant
birthday: 2023-01-01
=================================[1m Tool Message [0m=================================
Name: human_assistance
Made a correction: {'name': 'LangGraph', 'birthday': 'Jan 17, 2024'}
==================================[1m Ai Message [0m==================================
Thank you for the human assistance. I can now provide you with the correct information about LangGraph's release date.
LangGraph was initially released on January 17, 2024. This information comes from the human assistance correction, which is more accurate than the search results I initially found.
To summarize:
1. LangGraph's original release date: January 17, 2024
2. LangGraph Cloud announcement: June 27, 2024
It's worth noting that LangGraph had been in development and use for some time before the LangGraph Cloud announcement, but the official initial release of LangGraph itself was on January 17, 2024.
snapshot = graph.get_state(config)
{k: v for k, v in snapshot.values.items() if k in ("name", "birthday")}
这使得下游节点(例如,进一步处理或存储信息的节点)可以轻松访问它们。
手动更新状态¶
LangGraph 提供了对应用程序状态的高度控制。例如,在任何时候(包括中断时),我们都可以使用 graph.update_state
手动覆盖键
{'configurable': {'thread_id': '1',
'checkpoint_ns': '',
'checkpoint_id': '1efd4ec5-cf69-6352-8006-9278f1730162'}}
如果我们调用 graph.get_state
,我们可以看到新值已反映出来
snapshot = graph.get_state(config)
{k: v for k, v in snapshot.values.items() if k in ("name", "birthday")}
手动状态更新甚至会在 LangSmith 中 生成跟踪。如果需要,它们也可以用于控制人机协作工作流程,如 本指南中所述。通常建议使用 interrupt
函数,因为它允许数据在人机协作交互中独立于状态更新进行传输。
恭喜! 您已经向状态添加了自定义键,以促进更复杂的工作流程,并学习了如何从工具内部生成状态更新。
我们的教程即将完成,但在完成之前,我们还要回顾一个连接 checkpointing
和 state updates
的概念。
本节的代码在下面重现,供您参考。
完整代码
API Reference: ChatAnthropic | TavilySearchResults | ToolMessage | InjectedToolCallId | tool | MemorySaver | StateGraph | START | END | add_messages | ToolNode | tools_condition | Command | interruptfrom typing import Annotated from langchain_anthropic import ChatAnthropic from langchain_community.tools.tavily_search import TavilySearchResults from langchain_core.messages import ToolMessage from langchain_core.tools import InjectedToolCallId, tool from typing_extensions import TypedDict from langgraph.checkpoint.memory import MemorySaver from langgraph.graph import StateGraph, START, END from langgraph.graph.message import add_messages from langgraph.prebuilt import ToolNode, tools_condition from langgraph.types import Command, interrupt class State(TypedDict): messages: Annotated[list, add_messages] name: str birthday: str @tool def human_assistance( name: str, birthday: str, tool_call_id: Annotated[str, InjectedToolCallId] ) -> str: """Request assistance from a human.""" human_response = interrupt( { "question": "Is this correct?", "name": name, "birthday": birthday, }, ) if human_response.get("correct", "").lower().startswith("y"): verified_name = name verified_birthday = birthday response = "Correct" else: verified_name = human_response.get("name", name) verified_birthday = human_response.get("birthday", birthday) response = f"Made a correction: {human_response}" state_update = { "name": verified_name, "birthday": verified_birthday, "messages": [ToolMessage(response, tool_call_id=tool_call_id)], } return Command(update=state_update) tool = TavilySearchResults(max_results=2) tools = [tool, human_assistance] llm = ChatAnthropic(model="claude-3-5-sonnet-20240620") llm_with_tools = llm.bind_tools(tools) def chatbot(state: State): message = llm_with_tools.invoke(state["messages"]) assert(len(message.tool_calls) <= 1) return {"messages": [message]} graph_builder = StateGraph(State) graph_builder.add_node("chatbot", chatbot) tool_node = ToolNode(tools=tools) graph_builder.add_node("tools", tool_node) graph_builder.add_conditional_edges( "chatbot", tools_condition, ) graph_builder.add_edge("tools", "chatbot") graph_builder.add_edge(START, "chatbot") memory = MemorySaver() graph = graph_builder.compile(checkpointer=memory)
第六部分:时间旅行¶
在典型的聊天机器人工作流程中,用户与机器人交互 1 次或多次以完成任务。在前面的章节中,我们看到了如何添加记忆和人机协作,以便能够检查点我们的图状态并控制未来的响应。
但是,如果您想让用户从之前的响应开始并“分支”以探索单独的结果怎么办?或者,如果您想让用户能够“回溯”您的助手的工作以纠正一些错误或尝试不同的策略(在自主软件工程师等应用程序中很常见)怎么办?
您可以使用 LangGraph 的内置“时间旅行”功能创建这两种体验以及更多体验。
在本节中,您将通过使用图的 get_state_history
方法获取检查点来“回溯”您的图。然后,您可以从之前的时间点恢复执行。
为此,让我们使用 第三部分 中带有工具的简单聊天机器人
from typing import Annotated
from langchain_anthropic import ChatAnthropic
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_core.messages import BaseMessage
from typing_extensions import TypedDict
from langgraph.checkpoint.memory import MemorySaver
from langgraph.graph import StateGraph, START, END
from langgraph.graph.message import add_messages
from langgraph.prebuilt import ToolNode, tools_condition
class State(TypedDict):
messages: Annotated[list, add_messages]
graph_builder = StateGraph(State)
tool = TavilySearchResults(max_results=2)
tools = [tool]
llm = ChatAnthropic(model="claude-3-5-sonnet-20240620")
llm_with_tools = llm.bind_tools(tools)
def chatbot(state: State):
return {"messages": [llm_with_tools.invoke(state["messages"])]}
graph_builder.add_node("chatbot", chatbot)
tool_node = ToolNode(tools=[tool])
graph_builder.add_node("tools", tool_node)
graph_builder.add_conditional_edges(
"chatbot",
tools_condition,
)
graph_builder.add_edge("tools", "chatbot")
graph_builder.add_edge(START, "chatbot")
memory = MemorySaver()
graph = graph_builder.compile(checkpointer=memory)
API 参考:ChatAnthropic | TavilySearchResults | BaseMessage | MemorySaver | StateGraph | START | END | add_messages | ToolNode | tools_condition
让我们的图执行几个步骤。每个步骤都将在其状态历史记录中进行检查点
config = {"configurable": {"thread_id": "1"}}
events = graph.stream(
{
"messages": [
{
"role": "user",
"content": (
"I'm learning LangGraph. "
"Could you do some research on it for me?"
),
},
],
},
config,
stream_mode="values",
)
for event in events:
if "messages" in event:
event["messages"][-1].pretty_print()
================================[1m Human Message [0m=================================
I'm learning LangGraph. Could you do some research on it for me?
==================================[1m Ai Message [0m==================================
[{'text': "Certainly! I'd be happy to research LangGraph for you. To get the most up-to-date and accurate information, I'll use the Tavily search engine to look this up. Let me do that for you now.", 'type': 'text'}, {'id': 'toolu_01BscbfJJB9EWJFqGrN6E54e', 'input': {'query': 'LangGraph latest information and features'}, 'name': 'tavily_search_results_json', 'type': 'tool_use'}]
Tool Calls:
tavily_search_results_json (toolu_01BscbfJJB9EWJFqGrN6E54e)
Call ID: toolu_01BscbfJJB9EWJFqGrN6E54e
Args:
query: LangGraph latest information and features
=================================[1m Tool Message [0m=================================
Name: tavily_search_results_json
[{"url": "https://blockchain.news/news/langchain-new-features-upcoming-events-update", "content": "LangChain, a leading platform in the AI development space, has released its latest updates, showcasing new use cases and enhancements across its ecosystem. According to the LangChain Blog, the updates cover advancements in LangGraph Cloud, LangSmith's self-improving evaluators, and revamped documentation for LangGraph."}, {"url": "https://blog.langchain.ac.cn/langgraph-platform-announce/", "content": "With these learnings under our belt, we decided to couple some of our latest offerings under LangGraph Platform. LangGraph Platform today includes LangGraph Server, LangGraph Studio, plus the CLI and SDK. ... we added features in LangGraph Server to deliver on a few key value areas. Below, we'll focus on these aspects of LangGraph Platform."}]
==================================[1m Ai Message [0m==================================
Thank you for your patience. I've found some recent information about LangGraph for you. Let me summarize the key points:
1. LangGraph is part of the LangChain ecosystem, which is a leading platform in AI development.
2. Recent updates and features of LangGraph include:
a. LangGraph Cloud: This seems to be a cloud-based version of LangGraph, though specific details weren't provided in the search results.
b. LangGraph Platform: This is a newly introduced concept that combines several offerings:
- LangGraph Server
- LangGraph Studio
- CLI (Command Line Interface)
- SDK (Software Development Kit)
3. LangGraph Server: This component has received new features to enhance its value proposition, though the specific features weren't detailed in the search results.
4. LangGraph Studio: This appears to be a new tool in the LangGraph ecosystem, likely providing a graphical interface for working with LangGraph.
5. Documentation: The LangGraph documentation has been revamped, which should make it easier for learners like yourself to understand and use the tool.
6. Integration with LangSmith: While not directly part of LangGraph, LangSmith (another tool in the LangChain ecosystem) now features self-improving evaluators, which might be relevant if you're using LangGraph as part of a larger LangChain project.
As you're learning LangGraph, it would be beneficial to:
1. Check out the official LangChain documentation, especially the newly revamped LangGraph sections.
2. Explore the different components of the LangGraph Platform (Server, Studio, CLI, and SDK) to see which best fits your learning needs.
3. Keep an eye on LangGraph Cloud developments, as cloud-based solutions often provide an easier starting point for learners.
4. Consider how LangGraph fits into the broader LangChain ecosystem, especially its interaction with tools like LangSmith.
Is there any specific aspect of LangGraph you'd like to know more about? I'd be happy to do a more focused search on particular features or use cases.
events = graph.stream(
{
"messages": [
{
"role": "user",
"content": (
"Ya that's helpful. Maybe I'll "
"build an autonomous agent with it!"
),
},
],
},
config,
stream_mode="values",
)
for event in events:
if "messages" in event:
event["messages"][-1].pretty_print()
================================[1m Human Message [0m=================================
Ya that's helpful. Maybe I'll build an autonomous agent with it!
==================================[1m Ai Message [0m==================================
[{'text': "That's an exciting idea! Building an autonomous agent with LangGraph is indeed a great application of this technology. LangGraph is particularly well-suited for creating complex, multi-step AI workflows, which is perfect for autonomous agents. Let me gather some more specific information about using LangGraph for building autonomous agents.", 'type': 'text'}, {'id': 'toolu_01QWNHhUaeeWcGXvA4eHT7Zo', 'input': {'query': 'Building autonomous agents with LangGraph examples and tutorials'}, 'name': 'tavily_search_results_json', 'type': 'tool_use'}]
Tool Calls:
tavily_search_results_json (toolu_01QWNHhUaeeWcGXvA4eHT7Zo)
Call ID: toolu_01QWNHhUaeeWcGXvA4eHT7Zo
Args:
query: Building autonomous agents with LangGraph examples and tutorials
=================================[1m Tool Message [0m=================================
Name: tavily_search_results_json
[{"url": "https://towardsdatascience.com/building-autonomous-multi-tool-agents-with-gemini-2-0-and-langgraph-ad3d7bd5e79d", "content": "Building Autonomous Multi-Tool Agents with Gemini 2.0 and LangGraph | by Youness Mansar | Jan, 2025 | Towards Data Science Building Autonomous Multi-Tool Agents with Gemini 2.0 and LangGraph A practical tutorial with full code examples for building and running multi-tool agents Towards Data Science LLMs are remarkable — they can memorize vast amounts of information, answer general knowledge questions, write code, generate stories, and even fix your grammar. In this tutorial, we are going to build a simple LLM agent that is equipped with four tools that it can use to answer a user’s question. This Agent will have the following specifications: Follow Published in Towards Data Science --------------------------------- Your home for data science and AI. Follow Follow Follow"}, {"url": "https://github.com/anmolaman20/Tools_and_Agents", "content": "GitHub - anmolaman20/Tools_and_Agents: This repository provides resources for building AI agents using Langchain and Langgraph. This repository provides resources for building AI agents using Langchain and Langgraph. This repository provides resources for building AI agents using Langchain and Langgraph. This repository serves as a comprehensive guide for building AI-powered agents using Langchain and Langgraph. It provides hands-on examples, practical tutorials, and resources for developers and AI enthusiasts to master building intelligent systems and workflows. AI Agent Development: Gain insights into creating intelligent systems that think, reason, and adapt in real time. This repository is ideal for AI practitioners, developers exploring language models, or anyone interested in building intelligent systems. This repository provides resources for building AI agents using Langchain and Langgraph."}]
==================================[1m Ai Message [0m==================================
Great idea! Building an autonomous agent with LangGraph is definitely an exciting project. Based on the latest information I've found, here are some insights and tips for building autonomous agents with LangGraph:
1. Multi-Tool Agents: LangGraph is particularly well-suited for creating autonomous agents that can use multiple tools. This allows your agent to have a diverse set of capabilities and choose the right tool for each task.
2. Integration with Large Language Models (LLMs): You can combine LangGraph with powerful LLMs like Gemini 2.0 to create more intelligent and capable agents. The LLM can serve as the "brain" of your agent, making decisions and generating responses.
3. Workflow Management: LangGraph excels at managing complex, multi-step AI workflows. This is crucial for autonomous agents that need to break down tasks into smaller steps and execute them in the right order.
4. Practical Tutorials Available: There are tutorials available that provide full code examples for building and running multi-tool agents. These can be incredibly helpful as you start your project.
5. Langchain Integration: LangGraph is often used in conjunction with Langchain. This combination provides a powerful framework for building AI agents, offering features like memory management, tool integration, and prompt management.
6. GitHub Resources: There are repositories available (like the one by anmolaman20) that provide comprehensive resources for building AI agents using Langchain and LangGraph. These can be valuable references as you develop your agent.
7. Real-time Adaptation: LangGraph allows you to create agents that can think, reason, and adapt in real-time, which is crucial for truly autonomous behavior.
8. Customization: You can equip your agent with specific tools tailored to your use case. For example, you might include tools for web searching, data analysis, or interacting with specific APIs.
To get started with your autonomous agent project:
1. Familiarize yourself with LangGraph's documentation and basic concepts.
2. Look into tutorials that specifically deal with building autonomous agents, like the one mentioned from Towards Data Science.
3. Decide on the specific capabilities you want your agent to have and identify the tools it will need.
4. Start with a simple agent and gradually add complexity as you become more comfortable with the framework.
5. Experiment with different LLMs to find the one that works best for your use case.
6. Pay attention to how you structure the agent's decision-making process and workflow.
7. Don't forget to implement proper error handling and safety measures, especially if your agent will be interacting with external systems or making important decisions.
Building an autonomous agent is an iterative process, so be prepared to refine and improve your agent over time. Good luck with your project! If you need any more specific information as you progress, feel free to ask.
replay
完整的状态历史记录,以查看发生的一切。
to_replay = None
for state in graph.get_state_history(config):
print("Num Messages: ", len(state.values["messages"]), "Next: ", state.next)
print("-" * 80)
if len(state.values["messages"]) == 6:
# We are somewhat arbitrarily selecting a specific state based on the number of chat messages in the state.
to_replay = state
Num Messages: 8 Next: ()
--------------------------------------------------------------------------------
Num Messages: 7 Next: ('chatbot',)
--------------------------------------------------------------------------------
Num Messages: 6 Next: ('tools',)
--------------------------------------------------------------------------------
Num Messages: 5 Next: ('chatbot',)
--------------------------------------------------------------------------------
Num Messages: 4 Next: ('__start__',)
--------------------------------------------------------------------------------
Num Messages: 4 Next: ()
--------------------------------------------------------------------------------
Num Messages: 3 Next: ('chatbot',)
--------------------------------------------------------------------------------
Num Messages: 2 Next: ('tools',)
--------------------------------------------------------------------------------
Num Messages: 1 Next: ('chatbot',)
--------------------------------------------------------------------------------
Num Messages: 0 Next: ('__start__',)
--------------------------------------------------------------------------------
to_replay
作为要从中恢复的状态。这是上面第二个图调用中 chatbot
节点之后的状态。
从此点恢复应接下来调用 action 节点。
('tools',)
{'configurable': {'thread_id': '1', 'checkpoint_ns': '', 'checkpoint_id': '1efd43e3-0c1f-6c4e-8006-891877d65740'}}
to_replay.config
) 包含一个 checkpoint_id
时间戳。提供此 checkpoint_id
值会告诉 LangGraph 的检查点程序加载该时刻的状态。让我们在下面尝试一下
# The `checkpoint_id` in the `to_replay.config` corresponds to a state we've persisted to our checkpointer.
for event in graph.stream(None, to_replay.config, stream_mode="values"):
if "messages" in event:
event["messages"][-1].pretty_print()
==================================[1m Ai Message [0m==================================
[{'text': "That's an exciting idea! Building an autonomous agent with LangGraph is indeed a great application of this technology. LangGraph is particularly well-suited for creating complex, multi-step AI workflows, which is perfect for autonomous agents. Let me gather some more specific information about using LangGraph for building autonomous agents.", 'type': 'text'}, {'id': 'toolu_01QWNHhUaeeWcGXvA4eHT7Zo', 'input': {'query': 'Building autonomous agents with LangGraph examples and tutorials'}, 'name': 'tavily_search_results_json', 'type': 'tool_use'}]
Tool Calls:
tavily_search_results_json (toolu_01QWNHhUaeeWcGXvA4eHT7Zo)
Call ID: toolu_01QWNHhUaeeWcGXvA4eHT7Zo
Args:
query: Building autonomous agents with LangGraph examples and tutorials
=================================[1m Tool Message [0m=================================
Name: tavily_search_results_json
[{"url": "https://towardsdatascience.com/building-autonomous-multi-tool-agents-with-gemini-2-0-and-langgraph-ad3d7bd5e79d", "content": "Building Autonomous Multi-Tool Agents with Gemini 2.0 and LangGraph | by Youness Mansar | Jan, 2025 | Towards Data Science Building Autonomous Multi-Tool Agents with Gemini 2.0 and LangGraph A practical tutorial with full code examples for building and running multi-tool agents Towards Data Science LLMs are remarkable — they can memorize vast amounts of information, answer general knowledge questions, write code, generate stories, and even fix your grammar. In this tutorial, we are going to build a simple LLM agent that is equipped with four tools that it can use to answer a user’s question. This Agent will have the following specifications: Follow Published in Towards Data Science --------------------------------- Your home for data science and AI. Follow Follow Follow"}, {"url": "https://github.com/anmolaman20/Tools_and_Agents", "content": "GitHub - anmolaman20/Tools_and_Agents: This repository provides resources for building AI agents using Langchain and Langgraph. This repository provides resources for building AI agents using Langchain and Langgraph. This repository provides resources for building AI agents using Langchain and Langgraph. This repository serves as a comprehensive guide for building AI-powered agents using Langchain and Langgraph. It provides hands-on examples, practical tutorials, and resources for developers and AI enthusiasts to master building intelligent systems and workflows. AI Agent Development: Gain insights into creating intelligent systems that think, reason, and adapt in real time. This repository is ideal for AI practitioners, developers exploring language models, or anyone interested in building intelligent systems. This repository provides resources for building AI agents using Langchain and Langgraph."}]
==================================[1m Ai Message [0m==================================
Great idea! Building an autonomous agent with LangGraph is indeed an excellent way to apply and deepen your understanding of the technology. Based on the search results, I can provide you with some insights and resources to help you get started:
1. Multi-Tool Agents:
LangGraph is well-suited for building autonomous agents that can use multiple tools. This allows your agent to have a variety of capabilities and choose the appropriate tool based on the task at hand.
2. Integration with Large Language Models (LLMs):
There's a tutorial that specifically mentions using Gemini 2.0 (Google's LLM) with LangGraph to build autonomous agents. This suggests that LangGraph can be integrated with various LLMs, giving you flexibility in choosing the language model that best fits your needs.
3. Practical Tutorials:
There are tutorials available that provide full code examples for building and running multi-tool agents. These can be invaluable as you start your project, giving you a concrete starting point and demonstrating best practices.
4. GitHub Resources:
There's a GitHub repository (github.com/anmolaman20/Tools_and_Agents) that provides resources for building AI agents using both Langchain and Langgraph. This could be a great resource for code examples, tutorials, and understanding how LangGraph fits into the broader LangChain ecosystem.
5. Real-Time Adaptation:
The resources mention creating intelligent systems that can think, reason, and adapt in real-time. This is a key feature of advanced autonomous agents and something you can aim for in your project.
6. Diverse Applications:
The materials suggest that these techniques can be applied to various tasks, from answering questions to potentially more complex decision-making processes.
To get started with your autonomous agent project using LangGraph, you might want to:
1. Review the tutorials mentioned, especially those with full code examples.
2. Explore the GitHub repository for hands-on examples and resources.
3. Decide on the specific tasks or capabilities you want your agent to have.
4. Choose an LLM to integrate with LangGraph (like GPT, Gemini, or others).
5. Start with a simple agent that uses one or two tools, then gradually expand its capabilities.
6. Implement decision-making logic to help your agent choose between different tools or actions.
7. Test your agent thoroughly with various inputs and scenarios to ensure robust performance.
Remember, building an autonomous agent is an iterative process. Start simple and gradually increase complexity as you become more comfortable with LangGraph and its capabilities.
Would you like more information on any specific aspect of building your autonomous agent with LangGraph?
**action**
节点恢复执行。您可以判断情况就是这样,因为上面打印的第一个值是来自我们搜索引擎工具的响应。
恭喜! 您现在已在 LangGraph 中使用了时间旅行检查点遍历。能够回溯和探索替代路径为调试、实验和交互式应用程序开辟了无限可能。
下一步¶
通过探索部署和高级功能进一步扩展您的旅程
服务器快速入门¶
- LangGraph 服务器快速入门:在本地启动 LangGraph 服务器,并使用 REST API 和 LangGraph Studio Web UI 与之交互。
LangGraph 云¶
- LangGraph 云快速入门:使用 LangGraph 云部署您的 LangGraph 应用程序。
LangGraph 框架¶
- LangGraph 概念:了解 LangGraph 的基本概念。
- LangGraph 操作指南:LangGraph 常见任务指南。
LangGraph 平台¶
使用这些资源扩展您的知识
- LangGraph 平台概念:了解 LangGraph 平台的基本概念。
- LangGraph 平台操作指南:LangGraph 平台常见任务指南。