纠正性 RAG (CRAG) 使用本地 LLM¶
纠正性 RAG (CRAG) 是一种 RAG 策略,它结合了对检索文档的自我反思/自评分。
该论文遵循以下一般流程
- 如果至少有一个文档超过了
relevance
的阈值,则继续生成 - 如果所有文档都低于
relevance
阈值,或者评分者不确定,则使用网络搜索来补充检索 - 在生成之前,它会对搜索或检索到的文档执行知识提炼
- 这会将文档划分为
knowledge strips
- 它对每个条带进行评分,并过滤掉不相关的条带
我们将使用 LangGraph 从头开始实现其中的一些想法
- 如果任何文档不相关,我们将使用网络搜索来补充检索。
- 我们将跳过知识提炼,但如果需要,可以将其作为节点添加回来。
- 我们将使用 Tavily Search 进行网络搜索。
设置¶
我们将使用 Ollama 来访问本地 LLM
- 下载 Ollama 应用。
- 拉取您选择的模型,例如:
ollama pull llama3
我们将使用 Tavily 进行网络搜索。
我们将使用带有 Nomic 本地嵌入 或(可选)OpenAI 嵌入的向量存储。
让我们安装我们需要的软件包并设置我们的 API 密钥
%%capture --no-stderr
%pip install -U langchain_community tiktoken langchainhub scikit-learn langchain langgraph tavily-python nomic[local] langchain-nomic langchain_openai
import getpass
import os
def _set_env(key: str):
if key not in os.environ:
os.environ[key] = getpass.getpass(f"{key}:")
_set_env("OPENAI_API_KEY")
_set_env("TAVILY_API_KEY")
设置 LangSmith 用于 LangGraph 开发
注册 LangSmith 以快速发现问题并提高您的 LangGraph 项目的性能。LangSmith 允许您使用跟踪数据来调试、测试和监控使用 LangGraph 构建的 LLM 应用 — 阅读 此处 了解更多关于如何开始的信息。
LLM¶
您可以从 Ollama LLM 中选择。
创建索引¶
让我们索引 3 篇博客文章。
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.document_loaders import WebBaseLoader
from langchain_community.vectorstores import SKLearnVectorStore
from langchain_nomic.embeddings import NomicEmbeddings # local
from langchain_openai import OpenAIEmbeddings # api
# List of URLs to load documents from
urls = [
"https://lilianweng.github.io/posts/2023-06-23-agent/",
"https://lilianweng.github.io/posts/2023-03-15-prompt-engineering/",
"https://lilianweng.github.io/posts/2023-10-25-adv-attack-llm/",
]
# Load documents from the URLs
docs = [WebBaseLoader(url).load() for url in urls]
docs_list = [item for sublist in docs for item in sublist]
# Initialize a text splitter with specified chunk size and overlap
text_splitter = RecursiveCharacterTextSplitter.from_tiktoken_encoder(
chunk_size=250, chunk_overlap=0
)
# Split the documents into chunks
doc_splits = text_splitter.split_documents(docs_list)
# Embedding
"""
embedding=NomicEmbeddings(
model="nomic-embed-text-v1.5",
inference_mode="local",
)
"""
embedding = OpenAIEmbeddings()
# Add the document chunks to the "vector store"
vectorstore = SKLearnVectorStore.from_documents(
documents=doc_splits,
embedding=embedding,
)
retriever = vectorstore.as_retriever(k=4)
API 参考:RecursiveCharacterTextSplitter | WebBaseLoader | SKLearnVectorStore | NomicEmbeddings | OpenAIEmbeddings
定义工具¶
### Retrieval Grader
from langchain.prompts import PromptTemplate
from langchain_community.chat_models import ChatOllama
from langchain_core.output_parsers import JsonOutputParser
from langchain_mistralai.chat_models import ChatMistralAI
# LLM
llm = ChatOllama(model=local_llm, format="json", temperature=0)
# Prompt
prompt = PromptTemplate(
template="""You are a teacher grading a quiz. You will be given:
1/ a QUESTION
2/ A FACT provided by the student
You are grading RELEVANCE RECALL:
A score of 1 means that ANY of the statements in the FACT are relevant to the QUESTION.
A score of 0 means that NONE of the statements in the FACT are relevant to the QUESTION.
1 is the highest (best) score. 0 is the lowest score you can give.
Explain your reasoning in a step-by-step manner. Ensure your reasoning and conclusion are correct.
Avoid simply stating the correct answer at the outset.
Question: {question} \n
Fact: \n\n {documents} \n\n
Give a binary score 'yes' or 'no' score to indicate whether the document is relevant to the question. \n
Provide the binary score as a JSON with a single key 'score' and no premable or explanation.
""",
input_variables=["question", "documents"],
)
retrieval_grader = prompt | llm | JsonOutputParser()
question = "agent memory"
docs = retriever.invoke(question)
doc_txt = docs[1].page_content
print(retrieval_grader.invoke({"question": question, "documents": doc_txt}))
API 参考:PromptTemplate | ChatOllama | JsonOutputParser | ChatMistralAI
### Generate
from langchain_core.output_parsers import StrOutputParser
# Prompt
prompt = PromptTemplate(
template="""You are an assistant for question-answering tasks.
Use the following documents to answer the question.
If you don't know the answer, just say that you don't know.
Use three sentences maximum and keep the answer concise:
Question: {question}
Documents: {documents}
Answer:
""",
input_variables=["question", "documents"],
)
# LLM
llm = ChatOllama(model=local_llm, temperature=0)
# Chain
rag_chain = prompt | llm | StrOutputParser()
# Run
generation = rag_chain.invoke({"documents": docs, "question": question})
print(generation)
API 参考:StrOutputParser
The document mentions "memory stream" which is a long-term memory module that records a comprehensive list of agents' experience in natural language. It also discusses short-term memory and long-term memory, with the latter providing the agent with the capability to retain and recall information over extended periods. Additionally, it mentions planning and reflection mechanisms that enable agents to behave conditioned on past experience.
### Search
from langchain_community.tools.tavily_search import TavilySearchResults
web_search_tool = TavilySearchResults(k=3)
API 参考:TavilySearchResults
创建图¶
在这里,我们将显式定义大部分控制流,仅使用 LLM 来定义评分后的单个分支点。
from typing import List
from typing_extensions import TypedDict
from IPython.display import Image, display
from langchain.schema import Document
from langgraph.graph import START, END, StateGraph
class GraphState(TypedDict):
"""
Represents the state of our graph.
Attributes:
question: question
generation: LLM generation
search: whether to add search
documents: list of documents
"""
question: str
generation: str
search: str
documents: List[str]
steps: List[str]
def retrieve(state):
"""
Retrieve documents
Args:
state (dict): The current graph state
Returns:
state (dict): New key added to state, documents, that contains retrieved documents
"""
question = state["question"]
documents = retriever.invoke(question)
steps = state["steps"]
steps.append("retrieve_documents")
return {"documents": documents, "question": question, "steps": steps}
def generate(state):
"""
Generate answer
Args:
state (dict): The current graph state
Returns:
state (dict): New key added to state, generation, that contains LLM generation
"""
question = state["question"]
documents = state["documents"]
generation = rag_chain.invoke({"documents": documents, "question": question})
steps = state["steps"]
steps.append("generate_answer")
return {
"documents": documents,
"question": question,
"generation": generation,
"steps": steps,
}
def grade_documents(state):
"""
Determines whether the retrieved documents are relevant to the question.
Args:
state (dict): The current graph state
Returns:
state (dict): Updates documents key with only filtered relevant documents
"""
question = state["question"]
documents = state["documents"]
steps = state["steps"]
steps.append("grade_document_retrieval")
filtered_docs = []
search = "No"
for d in documents:
score = retrieval_grader.invoke(
{"question": question, "documents": d.page_content}
)
grade = score["score"]
if grade == "yes":
filtered_docs.append(d)
else:
search = "Yes"
continue
return {
"documents": filtered_docs,
"question": question,
"search": search,
"steps": steps,
}
def web_search(state):
"""
Web search based on the re-phrased question.
Args:
state (dict): The current graph state
Returns:
state (dict): Updates documents key with appended web results
"""
question = state["question"]
documents = state.get("documents", [])
steps = state["steps"]
steps.append("web_search")
web_results = web_search_tool.invoke({"query": question})
documents.extend(
[
Document(page_content=d["content"], metadata={"url": d["url"]})
for d in web_results
]
)
return {"documents": documents, "question": question, "steps": steps}
def decide_to_generate(state):
"""
Determines whether to generate an answer, or re-generate a question.
Args:
state (dict): The current graph state
Returns:
str: Binary decision for next node to call
"""
search = state["search"]
if search == "Yes":
return "search"
else:
return "generate"
# Graph
workflow = StateGraph(GraphState)
# Define the nodes
workflow.add_node("retrieve", retrieve) # retrieve
workflow.add_node("grade_documents", grade_documents) # grade documents
workflow.add_node("generate", generate) # generatae
workflow.add_node("web_search", web_search) # web search
# Build graph
workflow.add_edge(START, "retrieve")
workflow.add_edge("retrieve", "grade_documents")
workflow.add_conditional_edges(
"grade_documents",
decide_to_generate,
{
"search": "web_search",
"generate": "generate",
},
)
workflow.add_edge("web_search", "generate")
workflow.add_edge("generate", END)
custom_graph = workflow.compile()
display(Image(custom_graph.get_graph(xray=True).draw_mermaid_png()))
API 参考:Document | START | END | StateGraph
import uuid
def predict_custom_agent_local_answer(example: dict):
config = {"configurable": {"thread_id": str(uuid.uuid4())}}
state_dict = custom_graph.invoke(
{"question": example["input"], "steps": []}, config
)
return {"response": state_dict["generation"], "steps": state_dict["steps"]}
example = {"input": "What are the types of agent memory?"}
response = predict_custom_agent_local_answer(example)
response
{'response': 'According to the documents, there are two types of agent memory:\n\n* Short-term memory (STM): This is a data structure that holds information temporarily and allows the agent to process it when needed.\n* Long-term memory (LTM): This provides the agent with the capability to retain and recall information over extended periods.\n\nThese types of memories allow the agent to learn, reason, and make decisions.',
'steps': ['retrieve_documents',
'grade_document_retrieval',
'web_search',
'generate_answer']}
跟踪
https://smith.langchain.com/public/88e7579e-2571-4cf6-98d2-1f9ce3359967/r
评估¶
现在我们已经定义了两个不同的 agent 架构,它们做的事情大致相同!
我们可以评估它们。请参阅我们的 概念指南,了解有关 agent 评估的背景信息。
响应¶
首先,我们可以评估 我们的 agent 在一组问答对上的表现如何。
我们将创建一个数据集并将其保存在 LangSmith 中。
from langsmith import Client
client = Client()
# Create a dataset
examples = [
(
"How does the ReAct agent use self-reflection? ",
"ReAct integrates reasoning and acting, performing actions - such tools like Wikipedia search API - and then observing / reasoning about the tool outputs.",
),
(
"What are the types of biases that can arise with few-shot prompting?",
"The biases that can arise with few-shot prompting include (1) Majority label bias, (2) Recency bias, and (3) Common token bias.",
),
(
"What are five types of adversarial attacks?",
"Five types of adversarial attacks are (1) Token manipulation, (2) Gradient based attack, (3) Jailbreak prompting, (4) Human red-teaming, (5) Model red-teaming.",
),
(
"Who did the Chicago Bears draft first in the 2024 NFL draft”?",
"The Chicago Bears drafted Caleb Williams first in the 2024 NFL draft.",
),
("Who won the 2024 NBA finals?", "The Boston Celtics on the 2024 NBA finals"),
]
# Save it
dataset_name = "Corrective RAG Agent Testing"
if not client.has_dataset(dataset_name=dataset_name):
dataset = client.create_dataset(dataset_name=dataset_name)
inputs, outputs = zip(
*[({"input": text}, {"output": label}) for text, label in examples]
)
client.create_examples(inputs=inputs, outputs=outputs, dataset_id=dataset.id)
现在,我们将使用 LLM as a grader
来比较两个 agent 响应与我们的 ground truth 参考答案。
这里 是我们可以使用的默认提示。
我们将使用 gpt-4o
作为我们的 LLM 评分器。
from langchain import hub
from langchain_openai import ChatOpenAI
# Grade prompt
grade_prompt_answer_accuracy = hub.pull("langchain-ai/rag-answer-vs-reference")
def answer_evaluator(run, example) -> dict:
"""
A simple evaluator for RAG answer accuracy
"""
# Get the question, the ground truth reference answer, RAG chain answer prediction
input_question = example.inputs["input"]
reference = example.outputs["output"]
prediction = run.outputs["response"]
# Define an LLM grader
llm = ChatOpenAI(model="gpt-4o", temperature=0)
answer_grader = grade_prompt_answer_accuracy | llm
# Run evaluator
score = answer_grader.invoke(
{
"question": input_question,
"correct_answer": reference,
"student_answer": prediction,
}
)
score = score["Score"]
return {"key": "answer_v_reference_score", "score": score}
API 参考:ChatOpenAI
轨迹¶
其次,我们可以评估每个 agent 相对于预期轨迹的工具调用列表。
这评估了我们的 agent 采取的具体推理轨迹!
from langsmith.schemas import Example, Run
# Reasoning traces that we expect the agents to take
expected_trajectory_1 = [
"retrieve_documents",
"grade_document_retrieval",
"web_search",
"generate_answer",
]
expected_trajectory_2 = [
"retrieve_documents",
"grade_document_retrieval",
"generate_answer",
]
def find_tool_calls_react(messages):
"""
Find all tool calls in the messages returned
"""
tool_calls = [
tc["name"] for m in messages["messages"] for tc in getattr(m, "tool_calls", [])
]
return tool_calls
def check_trajectory_react(root_run: Run, example: Example) -> dict:
"""
Check if all expected tools are called in exact order and without any additional tool calls.
"""
messages = root_run.outputs["messages"]
tool_calls = find_tool_calls_react(messages)
print(f"Tool calls ReAct agent: {tool_calls}")
if tool_calls == expected_trajectory_1 or tool_calls == expected_trajectory_2:
score = 1
else:
score = 0
return {"score": int(score), "key": "tool_calls_in_exact_order"}
def check_trajectory_custom(root_run: Run, example: Example) -> dict:
"""
Check if all expected tools are called in exact order and without any additional tool calls.
"""
tool_calls = root_run.outputs["steps"]
print(f"Tool calls custom agent: {tool_calls}")
if tool_calls == expected_trajectory_1 or tool_calls == expected_trajectory_2:
score = 1
else:
score = 0
return {"score": int(score), "key": "tool_calls_in_exact_order"}
from langsmith.evaluation import evaluate
experiment_prefix = f"custom-agent-{model_tested}"
experiment_results = evaluate(
predict_custom_agent_local_answer,
data=dataset_name,
evaluators=[answer_evaluator, check_trajectory_custom],
experiment_prefix=experiment_prefix + "-answer-and-tool-use",
num_repetitions=3,
max_concurrency=1, # Use when running locally
metadata={"version": metadata},
)
View the evaluation results for experiment: 'custom-agent-llama3-8b-answer-and-tool-use-d6006159' at:
https://smith.langchain.com/o/1fa8b1f4-fcb9-4072-9aa9-983e35ad61b8/datasets/a8b9273b-ca33-4e2f-9f69-9bbc37f6f51b/compare?selectedSessions=83c60822-ef22-43e8-ac85-4488af279c6f
Tool calls custom agent: ['retrieve_documents', 'grade_document_retrieval', 'web_search', 'generate_answer']
Tool calls custom agent: ['retrieve_documents', 'grade_document_retrieval', 'web_search', 'generate_answer']
Tool calls custom agent: ['retrieve_documents', 'grade_document_retrieval', 'web_search', 'generate_answer']
Tool calls custom agent: ['retrieve_documents', 'grade_document_retrieval', 'web_search', 'generate_answer']
Tool calls custom agent: ['retrieve_documents', 'grade_document_retrieval', 'web_search', 'generate_answer']
Tool calls custom agent: ['retrieve_documents', 'grade_document_retrieval', 'web_search', 'generate_answer']
Tool calls custom agent: ['retrieve_documents', 'grade_document_retrieval', 'web_search', 'generate_answer']
Tool calls custom agent: ['retrieve_documents', 'grade_document_retrieval', 'web_search', 'generate_answer']
Tool calls custom agent: ['retrieve_documents', 'grade_document_retrieval', 'web_search', 'generate_answer']
Tool calls custom agent: ['retrieve_documents', 'grade_document_retrieval', 'web_search', 'generate_answer']
Tool calls custom agent: ['retrieve_documents', 'grade_document_retrieval', 'web_search', 'generate_answer']
Tool calls custom agent: ['retrieve_documents', 'grade_document_retrieval', 'web_search', 'generate_answer']
Tool calls custom agent: ['retrieve_documents', 'grade_document_retrieval', 'web_search', 'generate_answer']
Tool calls custom agent: ['retrieve_documents', 'grade_document_retrieval', 'web_search', 'generate_answer']
Tool calls custom agent: ['retrieve_documents', 'grade_document_retrieval', 'web_search', 'generate_answer']
Custom
agent(如此处所示)和 ReAct 对 GPT-4o
和 Llama-3-70b
进行基准测试的结果。
local custom agent
在工具调用可靠性方面表现良好:它遵循预期的推理轨迹。
然而,答案准确性性能落后于使用 custom agent
实现的更大模型。