多智能体¶
如果单个智能体需要专注于多个领域或管理许多工具,它可能会遇到困难。为了解决这个问题,您可以将智能体分解为更小、独立的智能体,并将它们组合成一个多智能体系统。
在多智能体系统中,智能体之间需要相互通信。它们通过交接来做到这一点——交接是一种原语,描述了将控制权交给哪个智能体以及发送给该智能体的数据负载。
两种最流行的多智能体架构是:
- 主管 — 独立的智能体由一个中心主管智能体协调。主管控制所有通信流和任务委派,根据当前上下文和任务要求决定调用哪个智能体。
- 群组 — 智能体根据其专业性动态地相互交接控制权。系统会记住上次活跃的智能体,确保在后续交互中,对话会与该智能体继续。
主管¶
使用 langgraph-supervisor
库创建主管多智能体系统。
import { ChatOpenAI } from "@langchain/openai";
import { createSupervisor } from "@langchain/langgraph-supervisor";
import { createReactAgent } from "@langchain/langgraph/prebuilt";
import { tool } from "@langchain/core/tools";
import { z } from "zod";
const bookHotel = tool(
async (input: { hotel_name: string }) => {
return `Successfully booked a stay at ${input.hotel_name}.`;
},
{
name: "book_hotel",
description: "Book a hotel",
schema: z.object({
hotel_name: z.string().describe("The name of the hotel to book"),
}),
}
);
const bookFlight = tool(
async (input: { from_airport: string; to_airport: string }) => {
return `Successfully booked a flight from ${input.from_airport} to ${input.to_airport}.`;
},
{
name: "book_flight",
description: "Book a flight",
schema: z.object({
from_airport: z.string().describe("The departure airport code"),
to_airport: z.string().describe("The arrival airport code"),
}),
}
);
const llm = new ChatOpenAI({ modelName: "gpt-4o" });
// Create specialized agents
const flightAssistant = createReactAgent({
llm,
tools: [bookFlight],
prompt: "You are a flight booking assistant",
name: "flight_assistant",
});
const hotelAssistant = createReactAgent({
llm,
tools: [bookHotel],
prompt: "You are a hotel booking assistant",
name: "hotel_assistant",
});
const supervisor = createSupervisor({
agents: [flightAssistant, hotelAssistant],
llm,
prompt: "You manage a hotel booking assistant and a flight booking assistant. Assign work to them, one at a time.",
}).compile();
const stream = await supervisor.stream({
messages: [{
role: "user",
content: "first book a flight from BOS to JFK and then book a stay at McKittrick Hotel"
}]
});
for await (const chunk of stream) {
console.log(chunk);
console.log("\n");
}
群组¶
使用 langgraph-swarm
库创建群组多智能体系统。
import { createReactAgent } from "@langchain/langgraph/prebuilt";
import { ChatAnthropic } from "@langchain/anthropic";
import { createSwarm, createHandoffTool } from "@langchain/langgraph-swarm";
const transferToHotelAssistant = createHandoffTool({
agentName: "hotel_assistant",
description: "Transfer user to the hotel-booking assistant.",
});
const transferToFlightAssistant = createHandoffTool({
agentName: "flight_assistant",
description: "Transfer user to the flight-booking assistant.",
});
const llm = new ChatAnthropic({ modelName: "claude-3-5-sonnet-latest" });
const flightAssistant = createReactAgent({
llm,
tools: [bookFlight, transferToHotelAssistant],
prompt: "You are a flight booking assistant",
name: "flight_assistant",
});
const hotelAssistant = createReactAgent({
llm,
tools: [bookHotel, transferToFlightAssistant],
prompt: "You are a hotel booking assistant",
name: "hotel_assistant",
});
const swarm = createSwarm({
agents: [flightAssistant, hotelAssistant],
defaultActiveAgent: "flight_assistant",
}).compile();
const stream = await swarm.stream({
messages: [{
role: "user",
content: "first book a flight from BOS to JFK and then book a stay at McKittrick Hotel"
}]
});
for await (const chunk of stream) {
console.log(chunk);
console.log("\n");
}
交接¶
多智能体交互中的一个常见模式是交接,即一个智能体将控制权交接给另一个智能体。交接允许您指定:
- 目的地:要导航到的目标智能体
- 负载:要传递给该智能体的信息
这同时被 langgraph-supervisor
(主管交接给各个智能体)和 langgraph-swarm
(单个智能体可以交接给其他智能体)使用。
要使用 createReactAgent
实现交接,您需要:
-
创建一个可以控制权转移到不同智能体的特殊工具
const transferToBob = tool( async (_) => { return new Command({ // name of the agent (node) to go to goto: "bob", // data to send to the agent update: { messages: ... }, // indicate to LangGraph that we need to navigate to // agent node in a parent graph graph: Command.PARENT, }); }, { name: ..., schema: ..., description: ... } );
-
创建可以访问交接工具的独立智能体
-
定义一个包含独立智能体作为节点的父图
综合起来,以下是如何实现一个简单的包含两个智能体(一个航班预订助手和一个酒店预订助手)的多智能体系统:
import { ChatAnthropic } from "@langchain/anthropic";
import { createReactAgent } from "@langchain/langgraph/prebuilt";
import { StateGraph, MessagesAnnotation, Command, START, getCurrentTaskInput, END } from "@langchain/langgraph";
import { tool } from "@langchain/core/tools";
import { z } from "zod";
import { ToolMessage } from "@langchain/core/messages";
interface CreateHandoffToolParams {
agentName: string;
description?: string;
}
const createHandoffTool = ({
agentName,
description,
}: CreateHandoffToolParams) => {
const toolName = `transfer_to_${agentName}`;
const toolDescription = description || `Ask agent '${agentName}' for help`;
const handoffTool = tool(
async (_, config) => {
const toolMessage = new ToolMessage({
content: `Successfully transferred to ${agentName}`,
name: toolName,
tool_call_id: config.toolCall.id,
});
// inject the current agent state
const state =
getCurrentTaskInput() as (typeof MessagesAnnotation)["State"]; // (1)!
return new Command({ // (2)!
goto: agentName, // (3)!
update: { messages: state.messages.concat(toolMessage) }, // (4)!
graph: Command.PARENT, // (5)!
});
},
{
name: toolName,
schema: z.object({}),
description: toolDescription,
}
);
return handoffTool;
};
const bookHotel = tool(
async (input: { hotel_name: string }) => {
return `Successfully booked a stay at ${input.hotel_name}.`;
},
{
name: "book_hotel",
description: "Book a hotel",
schema: z.object({
hotel_name: z.string().describe("The name of the hotel to book"),
}),
}
);
const bookFlight = tool(
async (input: { from_airport: string; to_airport: string }) => {
return `Successfully booked a flight from ${input.from_airport} to ${input.to_airport}.`;
},
{
name: "book_flight",
description: "Book a flight",
schema: z.object({
from_airport: z.string().describe("The departure airport code"),
to_airport: z.string().describe("The arrival airport code"),
}),
}
);
const transferToHotelAssistant = createHandoffTool({
agentName: "hotel_assistant",
description: "Transfer user to the hotel-booking assistant.",
});
const transferToFlightAssistant = createHandoffTool({
agentName: "flight_assistant",
description: "Transfer user to the flight-booking assistant.",
});
const llm = new ChatAnthropic({ modelName: "claude-3-5-sonnet-latest" });
const flightAssistant = createReactAgent({
llm,
tools: [bookFlight, transferToHotelAssistant],
prompt: "You are a flight booking assistant",
name: "flight_assistant",
});
const hotelAssistant = createReactAgent({
llm,
tools: [bookHotel, transferToFlightAssistant],
prompt: "You are a hotel booking assistant",
name: "hotel_assistant",
});
const multiAgentGraph = new StateGraph(MessagesAnnotation)
.addNode("flight_assistant", flightAssistant, { ends: ["hotel_assistant", END] })
.addNode("hotel_assistant", hotelAssistant, { ends: ["flight_assistant", END] })
.addEdge(START, "flight_assistant")
.compile();
const stream = await multiAgentGraph.stream({
messages: [{
role: "user",
content: "book a flight from BOS to JFK and a stay at McKittrick Hotel"
}]
});
for await (const chunk of stream) {
console.log(chunk);
console.log("\n");
}
- 访问智能体的状态
Command
原语允许将状态更新和节点转换指定为单个操作,这使其在实现交接时非常有用。- 要交接到的智能体或节点的名称。
- 在交接时,获取智能体的消息并将其添加到父级的状态中。下一个智能体将看到父级状态。
- 指示 LangGraph 我们需要导航到父级多智能体图中的智能体节点。