如何将自定义系统提示添加到预构建的 ReAct 代理中¶
本教程将展示如何将自定义系统提示添加到 预构建的 ReAct 代理。有关如何开始使用预构建的 ReAct 代理的信息,请参阅 本教程
您可以通过将字符串传递给 state_modifier
参数来添加自定义系统提示。
设置¶
首先,让我们安装所需的软件包并设置 API 密钥
在 [1]
已复制!
%%capture --no-stderr
%pip install -U langgraph langchain-openai
%%capture --no-stderr %pip install -U langgraph langchain-openai
在 [ ]
已复制!
import getpass
import os
def _set_env(var: str):
if not os.environ.get(var):
os.environ[var] = getpass.getpass(f"{var}: ")
_set_env("OPENAI_API_KEY")
import getpass import os def _set_env(var: str): if not os.environ.get(var): os.environ[var] = getpass.getpass(f"{var}: ") _set_env("OPENAI_API_KEY")
代码¶
在 [1]
已复制!
# First we initialize the model we want to use.
from langchain_openai import ChatOpenAI
model = ChatOpenAI(model="gpt-4o", temperature=0)
# For this tutorial we will use custom tool that returns pre-defined values for weather in two cities (NYC & SF)
from typing import Literal
from langchain_core.tools import tool
@tool
def get_weather(city: Literal["nyc", "sf"]):
"""Use this to get weather information."""
if city == "nyc":
return "It might be cloudy in nyc"
elif city == "sf":
return "It's always sunny in sf"
else:
raise AssertionError("Unknown city")
tools = [get_weather]
# We can add our system prompt here
prompt = "Respond in Italian"
# Define the graph
from langgraph.prebuilt import create_react_agent
graph = create_react_agent(model, tools=tools, state_modifier=prompt)
# 首先,我们初始化要使用的模型。 from langchain_openai import ChatOpenAI model = ChatOpenAI(model="gpt-4o", temperature=0) # 在本教程中,我们将使用自定义工具,该工具为两个城市(纽约和旧金山)的天气返回预定义值 from typing import Literal from langchain_core.tools import tool @tool def get_weather(city: Literal["nyc", "sf"]): """使用此工具获取天气信息。""" if city == "nyc": return "纽约可能多云" elif city == "sf": return "旧金山总是阳光明媚" else: raise AssertionError("未知城市") tools = [get_weather] # 我们可以在此处添加系统提示 prompt = "以意大利语回复" # 定义图形 from langgraph.prebuilt import create_react_agent graph = create_react_agent(model, tools=tools, state_modifier=prompt)
用法¶
在 [2]
已复制!
def print_stream(stream):
for s in stream:
message = s["messages"][-1]
if isinstance(message, tuple):
print(message)
else:
message.pretty_print()
def print_stream(stream): for s in stream: message = s["messages"][-1] if isinstance(message, tuple): print(message) else: message.pretty_print()
在 [4]
已复制!
inputs = {"messages": [("user", "What's the weather in NYC?")]}
print_stream(graph.stream(inputs, stream_mode="values"))
inputs = {"messages": [("user", "纽约的天气怎么样?")]} print_stream(graph.stream(inputs, stream_mode="values"))
================================ Human Message ================================= What's the weather in NYC? ================================== Ai Message ================================== Tool Calls: get_weather (call_b02uzBRrIm2uciJa8zDXCDxT) Call ID: call_b02uzBRrIm2uciJa8zDXCDxT Args: city: nyc ================================= Tool Message ================================= Name: get_weather It might be cloudy in nyc ================================== Ai Message ================================== A New York potrebbe essere nuvoloso.