跳到内容

添加人工干预

interrupt

LangGraph 中的 interrupt 函数 通过在特定节点暂停图表,向人类呈现信息,并根据其输入恢复图表,从而实现人工干预工作流。这对于审批、编辑或收集额外上下文等任务非常有用。

图表使用提供人类响应的 Command 对象恢复。

API 参考: interrupt | Command

from langgraph.types import interrupt, Command

def human_node(state: State):
    value = interrupt( # (1)!
        {
            "text_to_revise": state["some_text"] # (2)!
        }
    )
    return {
        "some_text": value # (3)!
    }


graph = graph_builder.compile(checkpointer=checkpointer) # (4)!

# Run the graph until the interrupt is hit.
config = {"configurable": {"thread_id": "some_id"}}
result = graph.invoke({"some_text": "original text"}, config=config) # (5)!
print(result['__interrupt__']) # (6)!
# > [
# >    Interrupt(
# >       value={'text_to_revise': 'original text'}, 
# >       resumable=True,
# >       ns=['human_node:6ce9e64f-edef-fe5d-f7dc-511fa9526960']
# >    )
# > ] 

print(graph.invoke(Command(resume="Edited text"), config=config)) # (7)!
# > {'some_text': 'Edited text'}
  1. interrupt(...)human_node 暂停执行,将给定负载呈现给人类。
  2. 任何 JSON 可序列化值都可以传递给 interrupt 函数。这里是一个包含要修改文本的字典。
  3. 恢复后,interrupt(...) 的返回值是人类提供的输入,用于更新状态。
  4. 需要一个检查点来持久化图表状态。在生产环境中,这应该是持久的(例如,由数据库支持)。
  5. 图表以一些初始状态调用。
  6. 当图表遇到中断时,它会返回一个带有负载和元数据的 Interrupt 对象。
  7. 图表通过 Command(resume=...) 恢复,注入人类输入并继续执行。
扩展示例:使用 interrupt
from typing import TypedDict
import uuid

from langgraph.checkpoint.memory import InMemorySaver
from langgraph.constants import START
from langgraph.graph import StateGraph
from langgraph.types import interrupt, Command

class State(TypedDict):
    some_text: str

def human_node(state: State):
    value = interrupt( # (1)!
        {
            "text_to_revise": state["some_text"] # (2)!
        }
    )
    return {
        "some_text": value # (3)!
    }


# Build the graph
graph_builder = StateGraph(State)
graph_builder.add_node("human_node", human_node)
graph_builder.add_edge(START, "human_node")

checkpointer = InMemorySaver() # (4)!

graph = graph_builder.compile(checkpointer=checkpointer)

# Pass a thread ID to the graph to run it.
config = {"configurable": {"thread_id": uuid.uuid4()}}

# Run the graph until the interrupt is hit.
result = graph.invoke({"some_text": "original text"}, config=config) # (5)!

print(result['__interrupt__']) # (6)!
# > [
# >    Interrupt(
# >       value={'text_to_revise': 'original text'}, 
# >       resumable=True,
# >       ns=['human_node:6ce9e64f-edef-fe5d-f7dc-511fa9526960']
# >    )
# > ] 

print(graph.invoke(Command(resume="Edited text"), config=config)) # (7)!
# > {'some_text': 'Edited text'}
  1. interrupt(...)human_node 暂停执行,将给定负载呈现给人类。
  2. 任何 JSON 可序列化值都可以传递给 interrupt 函数。这里是一个包含要修改文本的字典。
  3. 恢复后,interrupt(...) 的返回值是人类提供的输入,用于更新状态。
  4. 需要一个检查点来持久化图表状态。在生产环境中,这应该是持久的(例如,由数据库支持)。
  5. 图表以一些初始状态调用。
  6. 当图表遇到中断时,它会返回一个带有负载和元数据的 Interrupt 对象。
  7. 图表通过 Command(resume=...) 恢复,注入人类输入并继续执行。

0.4.0 版本新增

__interrupt__ 是一个特殊键,当图表被中断时,在运行图表时将返回此键。在 0.4.0 版本中,invokeainvoke 中已添加了对 __interrupt__ 的支持。如果您使用的是旧版本,则只有在使用 streamastream 时才能在结果中看到 __interrupt__。您还可以使用 graph.get_state(thread_id) 获取中断值。

警告

中断功能强大且符合人体工程学。然而,尽管它们在开发人员体验方面可能与 Python 的 input() 函数类似,但需要注意的是,它们不会自动从中断点恢复执行。相反,它们会重新运行使用中断的整个节点。因此,中断通常最好放置在节点的开头或专用节点中。请阅读从中断中恢复部分以获取更多详细信息。

要求

要在图表中使用 interrupt,您需要

  1. 指定一个检查点 以在每一步之后保存图表状态。
  2. 在适当的位置调用 interrupt()。请参阅设计模式部分以获取示例。
  3. 使用 线程 ID 运行图表 直到命中 interrupt
  4. 使用 invoke/ainvoke/stream/astream 恢复执行(请参阅Command 原语)。

设计模式

人工干预工作流通常有三种不同的操作

  1. 批准或拒绝:在关键步骤(例如 API 调用)之前暂停图表,以审查和批准操作。如果操作被拒绝,您可以阻止图表执行该步骤,并可能采取替代操作。此模式通常涉及根据人类的输入对图表进行路由
  2. 编辑图表状态:暂停图表以审查和编辑图表状态。这对于纠正错误或使用附加信息更新状态非常有用。此模式通常涉及使用人类的输入更新状态。
  3. 获取输入:在图表中的特定步骤显式请求人工输入。这对于收集附加信息或上下文以指导代理的决策过程非常有用。

下面我们展示了可以使用这些操作实现的不同设计模式。

批准或拒绝

image

根据人类的批准或拒绝,图表可以继续执行操作或采取替代路径。

在关键步骤(例如 API 调用)之前暂停图表,以审查和批准操作。如果操作被拒绝,您可以阻止图表执行该步骤,并可能采取替代操作。

API 参考: interrupt | Command

from typing import Literal
from langgraph.types import interrupt, Command

def human_approval(state: State) -> Command[Literal["some_node", "another_node"]]:
    is_approved = interrupt(
        {
            "question": "Is this correct?",
            # Surface the output that should be
            # reviewed and approved by the human.
            "llm_output": state["llm_output"]
        }
    )

    if is_approved:
        return Command(goto="some_node")
    else:
        return Command(goto="another_node")

# Add the node to the graph in an appropriate location
# and connect it to the relevant nodes.
graph_builder.add_node("human_approval", human_approval)
graph = graph_builder.compile(checkpointer=checkpointer)

# After running the graph and hitting the interrupt, the graph will pause.
# Resume it with either an approval or rejection.
thread_config = {"configurable": {"thread_id": "some_id"}}
graph.invoke(Command(resume=True), config=thread_config)
扩展示例:使用中断批准或拒绝
from typing import Literal, TypedDict
import uuid

from langgraph.constants import START, END
from langgraph.graph import StateGraph
from langgraph.types import interrupt, Command
from langgraph.checkpoint.memory import MemorySaver

# Define the shared graph state
class State(TypedDict):
    llm_output: str
    decision: str

# Simulate an LLM output node
def generate_llm_output(state: State) -> State:
    return {"llm_output": "This is the generated output."}

# Human approval node
def human_approval(state: State) -> Command[Literal["approved_path", "rejected_path"]]:
    decision = interrupt({
        "question": "Do you approve the following output?",
        "llm_output": state["llm_output"]
    })

    if decision == "approve":
        return Command(goto="approved_path", update={"decision": "approved"})
    else:
        return Command(goto="rejected_path", update={"decision": "rejected"})

# Next steps after approval
def approved_node(state: State) -> State:
    print("✅ Approved path taken.")
    return state

# Alternative path after rejection
def rejected_node(state: State) -> State:
    print("❌ Rejected path taken.")
    return state

# Build the graph
builder = StateGraph(State)
builder.add_node("generate_llm_output", generate_llm_output)
builder.add_node("human_approval", human_approval)
builder.add_node("approved_path", approved_node)
builder.add_node("rejected_path", rejected_node)

builder.set_entry_point("generate_llm_output")
builder.add_edge("generate_llm_output", "human_approval")
builder.add_edge("approved_path", END)
builder.add_edge("rejected_path", END)

checkpointer = MemorySaver()
graph = builder.compile(checkpointer=checkpointer)

# Run until interrupt
config = {"configurable": {"thread_id": uuid.uuid4()}}
result = graph.invoke({}, config=config)
print(result["__interrupt__"])
# Output:
# Interrupt(value={'question': 'Do you approve the following output?', 'llm_output': 'This is the generated output.'}, ...)

# Simulate resuming with human input
# To test rejection, replace resume="approve" with resume="reject"
final_result = graph.invoke(Command(resume="approve"), config=config)
print(final_result)

有关更详细的示例,请参见如何审查工具调用

审查和编辑状态

image

人类可以审查和编辑图表的状态。这对于纠正错误或使用附加信息更新状态非常有用。

API 参考: interrupt

from langgraph.types import interrupt

def human_editing(state: State):
    ...
    result = interrupt(
        # Interrupt information to surface to the client.
        # Can be any JSON serializable value.
        {
            "task": "Review the output from the LLM and make any necessary edits.",
            "llm_generated_summary": state["llm_generated_summary"]
        }
    )

    # Update the state with the edited text
    return {
        "llm_generated_summary": result["edited_text"] 
    }

# Add the node to the graph in an appropriate location
# and connect it to the relevant nodes.
graph_builder.add_node("human_editing", human_editing)
graph = graph_builder.compile(checkpointer=checkpointer)

...

# After running the graph and hitting the interrupt, the graph will pause.
# Resume it with the edited text.
thread_config = {"configurable": {"thread_id": "some_id"}}
graph.invoke(
    Command(resume={"edited_text": "The edited text"}), 
    config=thread_config
)
扩展示例:使用中断编辑状态
from typing import TypedDict
import uuid

from langgraph.constants import START, END
from langgraph.graph import StateGraph
from langgraph.types import interrupt, Command
from langgraph.checkpoint.memory import MemorySaver

# Define the graph state
class State(TypedDict):
    summary: str

# Simulate an LLM summary generation
def generate_summary(state: State) -> State:
    return {
        "summary": "The cat sat on the mat and looked at the stars."
    }

# Human editing node
def human_review_edit(state: State) -> State:
    result = interrupt({
        "task": "Please review and edit the generated summary if necessary.",
        "generated_summary": state["summary"]
    })
    return {
        "summary": result["edited_summary"]
    }

# Simulate downstream use of the edited summary
def downstream_use(state: State) -> State:
    print(f"✅ Using edited summary: {state['summary']}")
    return state

# Build the graph
builder = StateGraph(State)
builder.add_node("generate_summary", generate_summary)
builder.add_node("human_review_edit", human_review_edit)
builder.add_node("downstream_use", downstream_use)

builder.set_entry_point("generate_summary")
builder.add_edge("generate_summary", "human_review_edit")
builder.add_edge("human_review_edit", "downstream_use")
builder.add_edge("downstream_use", END)

# Set up in-memory checkpointing for interrupt support
checkpointer = MemorySaver()
graph = builder.compile(checkpointer=checkpointer)

# Invoke the graph until it hits the interrupt
config = {"configurable": {"thread_id": uuid.uuid4()}}
result = graph.invoke({}, config=config)

# Output interrupt payload
print(result["__interrupt__"])
# Example output:
# Interrupt(
#   value={
#     'task': 'Please review and edit the generated summary if necessary.',
#     'generated_summary': 'The cat sat on the mat and looked at the stars.'
#   },
#   resumable=True,
#   ...
# )

# Resume the graph with human-edited input
edited_summary = "The cat lay on the rug, gazing peacefully at the night sky."
resumed_result = graph.invoke(
    Command(resume={"edited_summary": edited_summary}),
    config=config
)
print(resumed_result)

审查工具调用

image

人类可以在继续之前审查和编辑 LLM 的输出。这在 LLM 请求的工具调用可能敏感或需要人工监督的应用程序中尤为关键。
def human_review_node(state) -> Command[Literal["call_llm", "run_tool"]]:
    # This is the value we'll be providing via Command(resume=<human_review>)
    human_review = interrupt(
        {
            "question": "Is this correct?",
            # Surface tool calls for review
            "tool_call": tool_call
        }
    )

    review_action, review_data = human_review

    # Approve the tool call and continue
    if review_action == "continue":
        return Command(goto="run_tool")

    # Modify the tool call manually and then continue
    elif review_action == "update":
        ...
        updated_msg = get_updated_msg(review_data)
        # Remember that to modify an existing message you will need
        # to pass the message with a matching ID.
        return Command(goto="run_tool", update={"messages": [updated_message]})

    # Give natural language feedback, and then pass that back to the agent
    elif review_action == "feedback":
        ...
        feedback_msg = get_feedback_msg(review_data)
        return Command(goto="call_llm", update={"messages": [feedback_msg]})

有关更详细的示例,请参见如何审查工具调用

验证人工输入

如果您需要在图表本身(而不是在客户端)验证人类提供的输入,可以通过在单个节点内使用多个中断调用来实现。

API 参考: interrupt

from langgraph.types import interrupt

def human_node(state: State):
    """Human node with validation."""
    question = "What is your age?"

    while True:
        answer = interrupt(question)

        # Validate answer, if the answer isn't valid ask for input again.
        if not isinstance(answer, int) or answer < 0:
            question = f"'{answer} is not a valid age. What is your age?"
            answer = None
            continue
        else:
            # If the answer is valid, we can proceed.
            break

    print(f"The human in the loop is {answer} years old.")
    return {
        "age": answer
    }
扩展示例:验证用户输入
from typing import TypedDict
import uuid

from langgraph.constants import START, END
from langgraph.graph import StateGraph
from langgraph.types import interrupt, Command
from langgraph.checkpoint.memory import MemorySaver

# Define graph state
class State(TypedDict):
    age: int

# Node that asks for human input and validates it
def get_valid_age(state: State) -> State:
    prompt = "Please enter your age (must be a non-negative integer)."

    while True:
        user_input = interrupt(prompt)

        # Validate the input
        try:
            age = int(user_input)
            if age < 0:
                raise ValueError("Age must be non-negative.")
            break  # Valid input received
        except (ValueError, TypeError):
            prompt = f"'{user_input}' is not valid. Please enter a non-negative integer for age."

    return {"age": age}

# Node that uses the valid input
def report_age(state: State) -> State:
    print(f"✅ Human is {state['age']} years old.")
    return state

# Build the graph
builder = StateGraph(State)
builder.add_node("get_valid_age", get_valid_age)
builder.add_node("report_age", report_age)

builder.set_entry_point("get_valid_age")
builder.add_edge("get_valid_age", "report_age")
builder.add_edge("report_age", END)

# Create the graph with a memory checkpointer
checkpointer = MemorySaver()
graph = builder.compile(checkpointer=checkpointer)

# Run the graph until the first interrupt
config = {"configurable": {"thread_id": uuid.uuid4()}}
result = graph.invoke({}, config=config)
print(result["__interrupt__"])  # First prompt: "Please enter your age..."

# Simulate an invalid input (e.g., string instead of integer)
result = graph.invoke(Command(resume="not a number"), config=config)
print(result["__interrupt__"])  # Follow-up prompt with validation message

# Simulate a second invalid input (e.g., negative number)
result = graph.invoke(Command(resume="-10"), config=config)
print(result["__interrupt__"])  # Another retry

# Provide valid input
final_result = graph.invoke(Command(resume="25"), config=config)
print(final_result)  # Should include the valid age

使用 Command 原语恢复

当在图表中使用 interrupt 函数时,执行会在该点暂停并等待用户输入。

要恢复执行,请使用 Command 原语,可以通过 invokeainvokestreamastream 方法提供。

interrupt 提供响应: 要继续执行,请使用 Command(resume=value) 传递用户输入。图表从最初调用 interrupt(...) 的节点开头恢复执行。此时,interrupt 函数将返回 Command(resume=value) 中提供的值,而不会再次暂停。

# Resume graph execution by providing the user's input.
graph.invoke(Command(resume={"age": "25"}), thread_config)

中断后如何恢复?

警告

interrupt 恢复与 Python 的 input() 函数不同,后者从 input() 函数被调用的确切点恢复执行。

使用 interrupt 的一个关键方面是理解恢复是如何工作的。当您在 interrupt 之后恢复执行时,图表执行将从触发最后一个 interrupt图表节点开头开始。

从节点开头到 interrupt所有代码都将重新执行。

counter = 0
def node(state: State):
    # All the code from the beginning of the node to the interrupt will be re-executed
    # when the graph resumes.
    global counter
    counter += 1
    print(f"> Entered the node: {counter} # of times")
    # Pause the graph and wait for user input.
    answer = interrupt()
    print("The value of counter is:", counter)
    ...

恢复图表后,计数器将第二次递增,产生以下输出

> Entered the node: 2 # of times
The value of counter is: 2

一次调用恢复多个中断

如果任务队列中有多个中断,您可以使用带有中断 ID 到恢复值映射字典的 Command.resume,通过一次 invoke / stream 调用恢复多个中断。

例如,一旦您的图表被中断(理论上多次)并停滞

resume_map = {
    i.interrupt_id: f"human input for prompt {i.value}"
    for i in parent.get_state(thread_config).interrupts
}

parent_graph.invoke(Command(resume=resume_map), config=thread_config)

常见陷阱

副作用

将具有副作用的代码(例如 API 调用)放置在 interrupt 之后,以避免重复,因为每次恢复节点时都会重新触发这些副作用。

当节点从 interrupt 恢复时,此代码将再次重新执行 API 调用。

如果 API 调用不是幂等的或只是昂贵的,这可能会导致问题。

from langgraph.types import interrupt

def human_node(state: State):
    """Human node with validation."""
    api_call(...) # This code will be re-executed when the node is resumed.
    answer = interrupt(question)
from langgraph.types import interrupt

def human_node(state: State):
    """Human node with validation."""

    answer = interrupt(question)

    api_call(answer) # OK as it's after the interrupt
from langgraph.types import interrupt

def human_node(state: State):
    """Human node with validation."""

    answer = interrupt(question)

    return {
        "answer": answer
    }

def api_call_node(state: State):
    api_call(...) # OK as it's in a separate node

作为函数调用的子图

作为函数调用子图时,父图将从调用子图的节点开头(以及触发 interrupt 的位置)恢复执行。类似地,子图将从调用 interrupt() 函数的节点开头恢复。

例如,

def node_in_parent_graph(state: State):
    some_code()  # <-- This will re-execute when the subgraph is resumed.
    # Invoke a subgraph as a function.
    # The subgraph contains an `interrupt` call.
    subgraph_result = subgraph.invoke(some_input)
    ...
扩展示例:父图和子图执行流程

假设我们有一个包含 3 个节点的父图

父图node_1node_2(子图调用) → node_3

子图包含 3 个节点,其中第二个节点包含一个 interrupt

子图sub_node_1sub_node_2interrupt) → sub_node_3

恢复图表时,执行将按以下方式进行

  1. 跳过父图中的 node_1(已执行,图表状态已保存到快照中)。
  2. 从头开始重新执行父图中的 node_2
  3. 跳过子图中的 sub_node_1(已执行,图表状态已保存到快照中)。
  4. 从头开始重新执行子图中的 sub_node_2
  5. 继续执行 sub_node_3 和后续节点。

这是一个缩写示例代码,您可以使用它来了解子图如何与中断一起工作。它计算每个节点被进入的次数并打印计数。

import uuid
from typing import TypedDict

from langgraph.graph import StateGraph
from langgraph.constants import START
from langgraph.types import interrupt, Command
from langgraph.checkpoint.memory import MemorySaver


class State(TypedDict):
    """The graph state."""
    state_counter: int


counter_node_in_subgraph = 0

def node_in_subgraph(state: State):
    """A node in the sub-graph."""
    global counter_node_in_subgraph
    counter_node_in_subgraph += 1  # This code will **NOT** run again!
    print(f"Entered `node_in_subgraph` a total of {counter_node_in_subgraph} times")

counter_human_node = 0

def human_node(state: State):
    global counter_human_node
    counter_human_node += 1 # This code will run again!
    print(f"Entered human_node in sub-graph a total of {counter_human_node} times")
    answer = interrupt("what is your name?")
    print(f"Got an answer of {answer}")


checkpointer = MemorySaver()

subgraph_builder = StateGraph(State)
subgraph_builder.add_node("some_node", node_in_subgraph)
subgraph_builder.add_node("human_node", human_node)
subgraph_builder.add_edge(START, "some_node")
subgraph_builder.add_edge("some_node", "human_node")
subgraph = subgraph_builder.compile(checkpointer=checkpointer)


counter_parent_node = 0

def parent_node(state: State):
    """This parent node will invoke the subgraph."""
    global counter_parent_node

    counter_parent_node += 1 # This code will run again on resuming!
    print(f"Entered `parent_node` a total of {counter_parent_node} times")

    # Please note that we're intentionally incrementing the state counter
    # in the graph state as well to demonstrate that the subgraph update
    # of the same key will not conflict with the parent graph (until
    subgraph_state = subgraph.invoke(state)
    return subgraph_state


builder = StateGraph(State)
builder.add_node("parent_node", parent_node)
builder.add_edge(START, "parent_node")

# A checkpointer must be enabled for interrupts to work!
checkpointer = MemorySaver()
graph = builder.compile(checkpointer=checkpointer)

config = {
    "configurable": {
      "thread_id": uuid.uuid4(),
    }
}

for chunk in graph.stream({"state_counter": 1}, config):
    print(chunk)

print('--- Resuming ---')

for chunk in graph.stream(Command(resume="35"), config):
    print(chunk)

这将打印出

Entered `parent_node` a total of 1 times
Entered `node_in_subgraph` a total of 1 times
Entered human_node in sub-graph a total of 1 times
{'__interrupt__': (Interrupt(value='what is your name?', resumable=True, ns=['parent_node:4c3a0248-21f0-1287-eacf-3002bc304db4', 'human_node:2fe86d52-6f70-2a3f-6b2f-b1eededd6348'], when='during'),)}
--- Resuming ---
Entered `parent_node` a total of 2 times
Entered human_node in sub-graph a total of 2 times
Got an answer of 35
{'parent_node': {'state_counter': 1}}

使用多个中断

单个节点中使用多个中断对于验证人工输入等模式可能很有帮助。但是,如果在同一节点中使用多个中断,如果不仔细处理,可能会导致意外行为。

当一个节点包含多个中断调用时,LangGraph 会维护一个与执行该节点的任务相关的恢复值列表。每当执行恢复时,它会从节点开头开始。对于遇到的每个中断,LangGraph 会检查任务的恢复列表中是否存在匹配的值。匹配是严格基于索引的,因此节点内中断调用的顺序至关重要。

为避免问题,请避免在执行之间动态更改节点结构。这包括添加、删除或重新排序中断调用,因为此类更改可能导致索引不匹配。这些问题通常源于非常规模式,例如通过 Command(resume=..., update=SOME_STATE_MUTATION) 修改状态或依赖全局变量动态修改节点结构。

扩展示例:引入非确定性的错误代码
import uuid
from typing import TypedDict, Optional

from langgraph.graph import StateGraph
from langgraph.constants import START 
from langgraph.types import interrupt, Command
from langgraph.checkpoint.memory import MemorySaver


class State(TypedDict):
    """The graph state."""

    age: Optional[str]
    name: Optional[str]


def human_node(state: State):
    if not state.get('name'):
        name = interrupt("what is your name?")
    else:
        name = "N/A"

    if not state.get('age'):
        age = interrupt("what is your age?")
    else:
        age = "N/A"

    print(f"Name: {name}. Age: {age}")

    return {
        "age": age,
        "name": name,
    }


builder = StateGraph(State)
builder.add_node("human_node", human_node)
builder.add_edge(START, "human_node")

# A checkpointer must be enabled for interrupts to work!
checkpointer = MemorySaver()
graph = builder.compile(checkpointer=checkpointer)

config = {
    "configurable": {
        "thread_id": uuid.uuid4(),
    }
}

for chunk in graph.stream({"age": None, "name": None}, config):
    print(chunk)

for chunk in graph.stream(Command(resume="John", update={"name": "foo"}), config):
    print(chunk)
{'__interrupt__': (Interrupt(value='what is your name?', resumable=True, ns=['human_node:3a007ef9-c30d-c357-1ec1-86a1a70d8fba'], when='during'),)}
Name: N/A. Age: John
{'human_node': {'age': 'John', 'name': 'N/A'}}