使用函数式API¶
创建简单工作流¶
定义 entrypoint
时,输入仅限于函数的第一个参数。要传递多个输入,可以使用字典。
@entrypoint(checkpointer=checkpointer)
def my_workflow(inputs: dict) -> int:
value = inputs["value"]
another_value = inputs["another_value"]
...
my_workflow.invoke({"value": 1, "another_value": 2})
扩展示例:简单工作流
import uuid
from langgraph.func import entrypoint, task
from langgraph.checkpoint.memory import MemorySaver
# Task that checks if a number is even
@task
def is_even(number: int) -> bool:
return number % 2 == 0
# Task that formats a message
@task
def format_message(is_even: bool) -> str:
return "The number is even." if is_even else "The number is odd."
# Create a checkpointer for persistence
checkpointer = MemorySaver()
@entrypoint(checkpointer=checkpointer)
def workflow(inputs: dict) -> str:
"""Simple workflow to classify a number."""
even = is_even(inputs["number"]).result()
return format_message(even).result()
# Run the workflow with a unique thread ID
config = {"configurable": {"thread_id": str(uuid.uuid4())}}
result = workflow.invoke({"number": 7}, config=config)
print(result)
扩展示例:使用 LLM 撰写论文
此示例演示了如何在语法上使用 @task
和 @entrypoint
装饰器。如果提供了检查点,工作流结果将持久化到检查点中。
import uuid
from langchain.chat_models import init_chat_model
from langgraph.func import entrypoint, task
from langgraph.checkpoint.memory import MemorySaver
llm = init_chat_model('openai:gpt-3.5-turbo')
# Task: generate essay using an LLM
@task
def compose_essay(topic: str) -> str:
"""Generate an essay about the given topic."""
return llm.invoke([
{"role": "system", "content": "You are a helpful assistant that writes essays."},
{"role": "user", "content": f"Write an essay about {topic}."}
]).content
# Create a checkpointer for persistence
checkpointer = MemorySaver()
@entrypoint(checkpointer=checkpointer)
def workflow(topic: str) -> str:
"""Simple workflow that generates an essay with an LLM."""
return compose_essay(topic).result()
# Execute the workflow
config = {"configurable": {"thread_id": str(uuid.uuid4())}}
result = workflow.invoke("the history of flight", config=config)
print(result)
并行执行¶
任务可以通过并发调用并等待结果来并行执行。这对于提高 I/O 密集型任务(例如,调用 LLM API)的性能非常有用。
@task
def add_one(number: int) -> int:
return number + 1
@entrypoint(checkpointer=checkpointer)
def graph(numbers: list[int]) -> list[str]:
futures = [add_one(i) for i in numbers]
return [f.result() for f in futures]
扩展示例:并行 LLM 调用
此示例演示了如何使用 @task
并行运行多个 LLM 调用。每个调用都会生成关于不同主题的一段文字,结果会合并成一个文本输出。
import uuid
from langchain.chat_models import init_chat_model
from langgraph.func import entrypoint, task
from langgraph.checkpoint.memory import MemorySaver
# Initialize the LLM model
llm = init_chat_model("openai:gpt-3.5-turbo")
# Task that generates a paragraph about a given topic
@task
def generate_paragraph(topic: str) -> str:
response = llm.invoke([
{"role": "system", "content": "You are a helpful assistant that writes educational paragraphs."},
{"role": "user", "content": f"Write a paragraph about {topic}."}
])
return response.content
# Create a checkpointer for persistence
checkpointer = MemorySaver()
@entrypoint(checkpointer=checkpointer)
def workflow(topics: list[str]) -> str:
"""Generates multiple paragraphs in parallel and combines them."""
futures = [generate_paragraph(topic) for topic in topics]
paragraphs = [f.result() for f in futures]
return "\n\n".join(paragraphs)
# Run the workflow
config = {"configurable": {"thread_id": str(uuid.uuid4())}}
result = workflow.invoke(["quantum computing", "climate change", "history of aviation"], config=config)
print(result)
此示例使用 LangGraph 的并发模型来缩短执行时间,尤其是在任务涉及 I/O(如 LLM 补全)时。
调用图¶
函数式 API 和图 API 可以在同一应用程序中一起使用,因为它们共享相同的底层运行时。
API 参考:entrypoint | StateGraph
from langgraph.func import entrypoint
from langgraph.graph import StateGraph
builder = StateGraph()
...
some_graph = builder.compile()
@entrypoint()
def some_workflow(some_input: dict) -> int:
# Call a graph defined using the graph API
result_1 = some_graph.invoke(...)
# Call another graph defined using the graph API
result_2 = another_graph.invoke(...)
return {
"result_1": result_1,
"result_2": result_2
}
扩展示例:从函数式 API 调用简单图
import uuid
from typing import TypedDict
from langgraph.func import entrypoint
from langgraph.checkpoint.memory import MemorySaver
from langgraph.graph import StateGraph
# Define the shared state type
class State(TypedDict):
foo: int
# Define a simple transformation node
def double(state: State) -> State:
return {"foo": state["foo"] * 2}
# Build the graph using the Graph API
builder = StateGraph(State)
builder.add_node("double", double)
builder.set_entry_point("double")
graph = builder.compile()
# Define the functional API workflow
checkpointer = MemorySaver()
@entrypoint(checkpointer=checkpointer)
def workflow(x: int) -> dict:
result = graph.invoke({"foo": x})
return {"bar": result["foo"]}
# Execute the workflow
config = {"configurable": {"thread_id": str(uuid.uuid4())}}
print(workflow.invoke(5, config=config)) # Output: {'bar': 10}
调用其他入口点¶
您可以在 entrypoint 或 task 内部调用其他 entrypoint。
@entrypoint() # Will automatically use the checkpointer from the parent entrypoint
def some_other_workflow(inputs: dict) -> int:
return inputs["value"]
@entrypoint(checkpointer=checkpointer)
def my_workflow(inputs: dict) -> int:
value = some_other_workflow.invoke({"value": 1})
return value
扩展示例:调用另一个入口点
import uuid
from langgraph.func import entrypoint
from langgraph.checkpoint.memory import MemorySaver
# Initialize a checkpointer
checkpointer = MemorySaver()
# A reusable sub-workflow that multiplies a number
@entrypoint()
def multiply(inputs: dict) -> int:
return inputs["a"] * inputs["b"]
# Main workflow that invokes the sub-workflow
@entrypoint(checkpointer=checkpointer)
def main(inputs: dict) -> dict:
result = multiply.invoke({"a": inputs["x"], "b": inputs["y"]})
return {"product": result}
# Execute the main workflow
config = {"configurable": {"thread_id": str(uuid.uuid4())}}
print(main.invoke({"x": 6, "y": 7}, config=config)) # Output: {'product': 42}
流式传输¶
函数式 API 使用与 图 API 相同的流式传输机制。请参阅流式传输指南部分了解更多详细信息。
使用流式传输 API 流式传输更新和自定义数据的示例。
API 参考:entrypoint | MemorySaver | get_stream_writer
from langgraph.func import entrypoint
from langgraph.checkpoint.memory import MemorySaver
from langgraph.config import get_stream_writer # (1)!
checkpointer = MemorySaver()
@entrypoint(checkpointer=checkpointer)
def main(inputs: dict) -> int:
writer = get_stream_writer() # (2)!
writer("Started processing") # (3)!
result = inputs["x"] * 2
writer(f"Result is {result}") # (4)!
return result
config = {"configurable": {"thread_id": "abc"}}
for mode, chunk in main.stream( # (5)!
{"x": 5},
stream_mode=["custom", "updates"], # (6)!
config=config
):
print(f"{mode}: {chunk}")
- 从
langgraph.config
导入get_stream_writer
。 - 在入口点内获取流式写入器实例。
- 在计算开始前发出自定义数据。
- 计算结果后发出另一个自定义消息。
- 使用
.stream()
处理流式输出。 - 指定要使用的流式传输模式。
('updates', {'add_one': 2})
('updates', {'add_two': 3})
('custom', 'hello')
('custom', 'world')
('updates', {'main': 5})
Python < 3.11 的异步
如果使用 Python < 3.11 并编写异步代码,get_stream_writer()
将不起作用。请直接使用 StreamWriter
类。有关更多详细信息,请参阅Python < 3.11 的异步。
重试策略¶
API 参考:MemorySaver | entrypoint | task | RetryPolicy
from langgraph.checkpoint.memory import MemorySaver
from langgraph.func import entrypoint, task
from langgraph.types import RetryPolicy
# This variable is just used for demonstration purposes to simulate a network failure.
# It's not something you will have in your actual code.
attempts = 0
# Let's configure the RetryPolicy to retry on ValueError.
# The default RetryPolicy is optimized for retrying specific network errors.
retry_policy = RetryPolicy(retry_on=ValueError)
@task(retry=retry_policy)
def get_info():
global attempts
attempts += 1
if attempts < 2:
raise ValueError('Failure')
return "OK"
checkpointer = MemorySaver()
@entrypoint(checkpointer=checkpointer)
def main(inputs, writer):
return get_info().result()
config = {
"configurable": {
"thread_id": "1"
}
}
main.invoke({'any_input': 'foobar'}, config=config)
缓存任务¶
API 参考:entrypoint | task
import time
from langgraph.cache.memory import InMemoryCache
from langgraph.func import entrypoint, task
from langgraph.types import CachePolicy
@task(cache_policy=CachePolicy(ttl=120)) # (1)!
def slow_add(x: int) -> int:
time.sleep(1)
return x * 2
@entrypoint(cache=InMemoryCache())
def main(inputs: dict) -> dict[str, int]:
result1 = slow_add(inputs["x"]).result()
result2 = slow_add(inputs["x"]).result()
return {"result1": result1, "result2": result2}
for chunk in main.stream({"x": 5}, stream_mode="updates"):
print(chunk)
#> {'slow_add': 10}
#> {'slow_add': 10, '__metadata__': {'cached': True}}
#> {'main': {'result1': 10, 'result2': 10}}
ttl
以秒为单位指定。缓存将在该时间后失效。
错误后恢复¶
API 参考:MemorySaver | entrypoint | task | StreamWriter
import time
from langgraph.checkpoint.memory import MemorySaver
from langgraph.func import entrypoint, task
from langgraph.types import StreamWriter
# This variable is just used for demonstration purposes to simulate a network failure.
# It's not something you will have in your actual code.
attempts = 0
@task()
def get_info():
"""
Simulates a task that fails once before succeeding.
Raises an exception on the first attempt, then returns "OK" on subsequent tries.
"""
global attempts
attempts += 1
if attempts < 2:
raise ValueError("Failure") # Simulate a failure on the first attempt
return "OK"
# Initialize an in-memory checkpointer for persistence
checkpointer = MemorySaver()
@task
def slow_task():
"""
Simulates a slow-running task by introducing a 1-second delay.
"""
time.sleep(1)
return "Ran slow task."
@entrypoint(checkpointer=checkpointer)
def main(inputs, writer: StreamWriter):
"""
Main workflow function that runs the slow_task and get_info tasks sequentially.
Parameters:
- inputs: Dictionary containing workflow input values.
- writer: StreamWriter for streaming custom data.
The workflow first executes `slow_task` and then attempts to execute `get_info`,
which will fail on the first invocation.
"""
slow_task_result = slow_task().result() # Blocking call to slow_task
get_info().result() # Exception will be raised here on the first attempt
return slow_task_result
# Workflow execution configuration with a unique thread identifier
config = {
"configurable": {
"thread_id": "1" # Unique identifier to track workflow execution
}
}
# This invocation will take ~1 second due to the slow_task execution
try:
# First invocation will raise an exception due to the `get_info` task failing
main.invoke({'any_input': 'foobar'}, config=config)
except ValueError:
pass # Handle the failure gracefully
当我们恢复执行时,无需重新运行 slow_task
,因为其结果已保存到检查点中。
人机协作¶
函数式 API 支持使用 interrupt
函数和 Command
原语的人机协作工作流。
请参阅以下示例了解更多详细信息
- 如何等待用户输入(函数式 API):展示了如何使用函数式 API 实现简单的人机协作工作流。
- 如何审查工具调用(函数式 API):本指南演示了如何使用 LangGraph 函数式 API 在 ReAct 代理中实现人机协作工作流。
短期记忆¶
短期记忆允许在同一线程 ID 的不同调用之间存储信息。有关更多详细信息,请参阅短期记忆。
解耦返回值与保存值¶
使用 entrypoint.final
将返回给调用者的值与持久化到检查点的值解耦。这在以下情况下很有用:
- 您想返回一个计算结果(例如,摘要或状态),但保存一个不同的内部值以供下次调用使用。
- 您需要控制在下次运行时传递给先前参数的内容。
API 参考:entrypoint | MemorySaver
from typing import Optional
from langgraph.func import entrypoint
from langgraph.checkpoint.memory import MemorySaver
checkpointer = MemorySaver()
@entrypoint(checkpointer=checkpointer)
def accumulate(n: int, *, previous: Optional[int]) -> entrypoint.final[int, int]:
previous = previous or 0
total = previous + n
# Return the *previous* value to the caller but save the *new* total to the checkpoint.
return entrypoint.final(value=previous, save=total)
config = {"configurable": {"thread_id": "my-thread"}}
print(accumulate.invoke(1, config=config)) # 0
print(accumulate.invoke(2, config=config)) # 1
print(accumulate.invoke(3, config=config)) # 3
聊天机器人示例¶
一个使用函数式 API 和 MemorySaver
检查点的简单聊天机器人示例。该机器人能够记住之前的对话并从上次中断的地方继续。
API 参考:BaseMessage | add_messages | entrypoint | task | MemorySaver | ChatAnthropic
from langchain_core.messages import BaseMessage
from langgraph.graph import add_messages
from langgraph.func import entrypoint, task
from langgraph.checkpoint.memory import MemorySaver
from langchain_anthropic import ChatAnthropic
model = ChatAnthropic(model="claude-3-5-sonnet-latest")
@task
def call_model(messages: list[BaseMessage]):
response = model.invoke(messages)
return response
checkpointer = MemorySaver()
@entrypoint(checkpointer=checkpointer)
def workflow(inputs: list[BaseMessage], *, previous: list[BaseMessage]):
if previous:
inputs = add_messages(previous, inputs)
response = call_model(inputs).result()
return entrypoint.final(value=response, save=add_messages(inputs, response))
config = {"configurable": {"thread_id": "1"}}
input_message = {"role": "user", "content": "hi! I'm bob"}
for chunk in workflow.stream([input_message], config, stream_mode="values"):
chunk.pretty_print()
input_message = {"role": "user", "content": "what's my name?"}
for chunk in workflow.stream([input_message], config, stream_mode="values"):
chunk.pretty_print()
扩展示例:构建一个简单聊天机器人
如何添加线程级持久化(函数式 API):展示了如何为函数式 API 工作流添加线程级持久化并实现一个简单聊天机器人。
长期记忆¶
长期记忆允许在不同的线程 ID 之间存储信息。这对于在一个对话中学习有关给定用户的信息并在另一个对话中使用它很有用。
扩展示例:添加长期记忆
如何添加跨线程持久化(函数式 API):展示了如何为函数式 API 工作流添加跨线程持久化并实现一个简单聊天机器人。
工作流¶
- 工作流和代理指南提供了更多关于如何使用函数式 API 构建工作流的示例。
代理¶
- 如何从头开始创建代理(函数式 API):展示了如何使用函数式 API 从头开始创建简单代理。
- 如何构建多代理网络:展示了如何使用函数式 API 构建多代理网络。
- 如何在多代理应用程序中添加多轮对话(函数式 API):允许最终用户与一个或多个代理进行多轮对话。
与其他库集成¶
- 使用函数式 API 将 LangGraph 的功能添加到其他框架:将 LangGraph 的持久化、内存和流式传输等功能添加到其他不提供这些功能的代理框架中。