跳到内容

工作流和代理

本指南回顾了代理系统的常见模式。在描述这些系统时,区分“工作流”和“代理”可能很有用。Anthropic 在这里很好地解释了这种差异的一种思考方式

工作流是通过预定义的代码路径编排 LLM 和工具的系统。另一方面,代理是 LLM 动态指导其自身流程和工具使用,并保持对其完成任务方式控制的系统。

这是一个可视化这些差异的简单方法

Agent Workflow

在构建代理和工作流时,LangGraph 提供了许多优势,包括持久性、流式处理以及对调试和部署的支持。

设置

您可以使用任何支持结构化输出和工具调用的聊天模型。下面,我们展示了安装软件包、设置 API 密钥以及测试 Anthropic 的结构化输出/工具调用的过程。

安装依赖项
pip install langchain_core langchain-anthropic langgraph 

初始化 LLM

import os
import getpass

from langchain_anthropic import ChatAnthropic

def _set_env(var: str):
    if not os.environ.get(var):
        os.environ[var] = getpass.getpass(f"{var}: ")


_set_env("ANTHROPIC_API_KEY")

llm = ChatAnthropic(model="claude-3-5-sonnet-latest")

API 参考:ChatAnthropic

构建模块:增强型 LLM

LLM 具有支持构建工作流和代理的增强功能。这些包括结构化输出工具调用,如下图所示,来自 Anthropic 博客

augmented_llm.png

# Schema for structured output
from pydantic import BaseModel, Field

class SearchQuery(BaseModel):
    search_query: str = Field(None, description="Query that is optimized web search.")
    justification: str = Field(
        None, description="Why this query is relevant to the user's request."
    )


# Augment the LLM with schema for structured output
structured_llm = llm.with_structured_output(SearchQuery)

# Invoke the augmented LLM
output = structured_llm.invoke("How does Calcium CT score relate to high cholesterol?")

# Define a tool
def multiply(a: int, b: int) -> int:
    return a * b

# Augment the LLM with tools
llm_with_tools = llm.bind_tools([multiply])

# Invoke the LLM with input that triggers the tool call
msg = llm_with_tools.invoke("What is 2 times 3?")

# Get the tool call
msg.tool_calls

提示链

在提示链中,每个 LLM 调用处理前一个调用的输出。

正如 Anthropic 博客 中指出的那样

提示链将任务分解为一系列步骤,其中每个 LLM 调用处理前一个调用的输出。您可以在任何中间步骤中添加程序化检查(请参阅下图中的“门控”),以确保过程仍在轨道上。

何时使用此工作流:此工作流非常适合任务可以轻松干净地分解为固定子任务的情况。主要目标是通过使每个 LLM 调用成为更简单的任务来权衡延迟以获得更高的准确性。

prompt_chain.png

from typing_extensions import TypedDict
from langgraph.graph import StateGraph, START, END
from IPython.display import Image, display


# Graph state
class State(TypedDict):
    topic: str
    joke: str
    improved_joke: str
    final_joke: str


# Nodes
def generate_joke(state: State):
    """First LLM call to generate initial joke"""

    msg = llm.invoke(f"Write a short joke about {state['topic']}")
    return {"joke": msg.content}


def check_punchline(state: State):
    """Gate function to check if the joke has a punchline"""

    # Simple check - does the joke contain "?" or "!"
    if "?" in state["joke"] or "!" in state["joke"]:
        return "Fail"
    return "Pass"


def improve_joke(state: State):
    """Second LLM call to improve the joke"""

    msg = llm.invoke(f"Make this joke funnier by adding wordplay: {state['joke']}")
    return {"improved_joke": msg.content}


def polish_joke(state: State):
    """Third LLM call for final polish"""

    msg = llm.invoke(f"Add a surprising twist to this joke: {state['improved_joke']}")
    return {"final_joke": msg.content}


# Build workflow
workflow = StateGraph(State)

# Add nodes
workflow.add_node("generate_joke", generate_joke)
workflow.add_node("improve_joke", improve_joke)
workflow.add_node("polish_joke", polish_joke)

# Add edges to connect nodes
workflow.add_edge(START, "generate_joke")
workflow.add_conditional_edges(
    "generate_joke", check_punchline, {"Fail": "improve_joke", "Pass": END}
)
workflow.add_edge("improve_joke", "polish_joke")
workflow.add_edge("polish_joke", END)

# Compile
chain = workflow.compile()

# Show workflow
display(Image(chain.get_graph().draw_mermaid_png()))

# Invoke
state = chain.invoke({"topic": "cats"})
print("Initial joke:")
print(state["joke"])
print("\n--- --- ---\n")
if "improved_joke" in state:
    print("Improved joke:")
    print(state["improved_joke"])
    print("\n--- --- ---\n")

    print("Final joke:")
    print(state["final_joke"])
else:
    print("Joke failed quality gate - no punchline detected!")

LangSmith 追踪

https://smith.langchain.com/public/a0281fca-3a71-46de-beee-791468607b75/r

资源

LangChain 学院

请参阅我们关于提示链的课程 此处

from langgraph.func import entrypoint, task


# Tasks
@task
def generate_joke(topic: str):
    """First LLM call to generate initial joke"""
    msg = llm.invoke(f"Write a short joke about {topic}")
    return msg.content


def check_punchline(joke: str):
    """Gate function to check if the joke has a punchline"""
    # Simple check - does the joke contain "?" or "!"
    if "?" in joke or "!" in joke:
        return "Fail"

    return "Pass"


@task
def improve_joke(joke: str):
    """Second LLM call to improve the joke"""
    msg = llm.invoke(f"Make this joke funnier by adding wordplay: {joke}")
    return msg.content


@task
def polish_joke(joke: str):
    """Third LLM call for final polish"""
    msg = llm.invoke(f"Add a surprising twist to this joke: {joke}")
    return msg.content


@entrypoint()
def parallel_workflow(topic: str):
    original_joke = generate_joke(topic).result()
    if check_punchline(original_joke) == "Pass":
        return original_joke

    improved_joke = improve_joke(original_joke).result()
    return polish_joke(improved_joke).result()

# Invoke
for step in parallel_workflow.stream("cats", stream_mode="updates"):
    print(step)
    print("\n")

LangSmith 追踪

https://smith.langchain.com/public/332fa4fc-b6ca-416e-baa3-161625e69163/r

并行化

通过并行化,LLM 同时处理一项任务

LLM 有时可以同时处理一项任务,并以编程方式聚合其输出。这种工作流,并行化,体现在两个关键变体中:分段:将任务分解为并行运行的独立子任务。投票:多次运行同一任务以获得不同的输出。

何时使用此工作流:当可以并行化划分的子任务以提高速度,或者当需要多个视角或尝试以获得更高置信度的结果时,并行化是有效的。对于具有多个考虑因素的复杂任务,通常当每个考虑因素都由单独的 LLM 调用处理时,LLM 的性能会更好,从而可以专注于每个特定方面。

parallelization.png

# Graph state
class State(TypedDict):
    topic: str
    joke: str
    story: str
    poem: str
    combined_output: str


# Nodes
def call_llm_1(state: State):
    """First LLM call to generate initial joke"""

    msg = llm.invoke(f"Write a joke about {state['topic']}")
    return {"joke": msg.content}


def call_llm_2(state: State):
    """Second LLM call to generate story"""

    msg = llm.invoke(f"Write a story about {state['topic']}")
    return {"story": msg.content}


def call_llm_3(state: State):
    """Third LLM call to generate poem"""

    msg = llm.invoke(f"Write a poem about {state['topic']}")
    return {"poem": msg.content}


def aggregator(state: State):
    """Combine the joke and story into a single output"""

    combined = f"Here's a story, joke, and poem about {state['topic']}!\n\n"
    combined += f"STORY:\n{state['story']}\n\n"
    combined += f"JOKE:\n{state['joke']}\n\n"
    combined += f"POEM:\n{state['poem']}"
    return {"combined_output": combined}


# Build workflow
parallel_builder = StateGraph(State)

# Add nodes
parallel_builder.add_node("call_llm_1", call_llm_1)
parallel_builder.add_node("call_llm_2", call_llm_2)
parallel_builder.add_node("call_llm_3", call_llm_3)
parallel_builder.add_node("aggregator", aggregator)

# Add edges to connect nodes
parallel_builder.add_edge(START, "call_llm_1")
parallel_builder.add_edge(START, "call_llm_2")
parallel_builder.add_edge(START, "call_llm_3")
parallel_builder.add_edge("call_llm_1", "aggregator")
parallel_builder.add_edge("call_llm_2", "aggregator")
parallel_builder.add_edge("call_llm_3", "aggregator")
parallel_builder.add_edge("aggregator", END)
parallel_workflow = parallel_builder.compile()

# Show workflow
display(Image(parallel_workflow.get_graph().draw_mermaid_png()))

# Invoke
state = parallel_workflow.invoke({"topic": "cats"})
print(state["combined_output"])

LangSmith 追踪

https://smith.langchain.com/public/3be2e53c-ca94-40dd-934f-82ff87fac277/r

资源

文档

请参阅我们关于并行化的文档 此处

LangChain 学院

请参阅我们关于并行化的课程 此处

@task
def call_llm_1(topic: str):
    """First LLM call to generate initial joke"""
    msg = llm.invoke(f"Write a joke about {topic}")
    return msg.content


@task
def call_llm_2(topic: str):
    """Second LLM call to generate story"""
    msg = llm.invoke(f"Write a story about {topic}")
    return msg.content


@task
def call_llm_3(topic):
    """Third LLM call to generate poem"""
    msg = llm.invoke(f"Write a poem about {topic}")
    return msg.content


@task
def aggregator(topic, joke, story, poem):
    """Combine the joke and story into a single output"""

    combined = f"Here's a story, joke, and poem about {topic}!\n\n"
    combined += f"STORY:\n{story}\n\n"
    combined += f"JOKE:\n{joke}\n\n"
    combined += f"POEM:\n{poem}"
    return combined


# Build workflow
@entrypoint()
def parallel_workflow(topic: str):
    joke_fut = call_llm_1(topic)
    story_fut = call_llm_2(topic)
    poem_fut = call_llm_3(topic)
    return aggregator(
        topic, joke_fut.result(), story_fut.result(), poem_fut.result()
    ).result()

# Invoke
for step in parallel_workflow.stream("cats", stream_mode="updates"):
    print(step)
    print("\n")

LangSmith 追踪

https://smith.langchain.com/public/623d033f-e814-41e9-80b1-75e6abb67801/r

路由

路由对输入进行分类并将其定向到后续任务。正如 Anthropic 博客 中指出的那样

路由对输入进行分类并将其定向到专门的后续任务。此工作流允许关注点分离,并构建更专业的提示。如果没有此工作流,针对一种输入进行优化可能会损害其他输入的性能。

何时使用此工作流:路由非常适用于复杂任务,在这些任务中,存在最好单独处理的不同类别,并且可以准确处理分类,无论是由 LLM 还是更传统的分类模型/算法处理。

routing.png

from typing_extensions import Literal
from langchain_core.messages import HumanMessage, SystemMessage


# Schema for structured output to use as routing logic
class Route(BaseModel):
    step: Literal["poem", "story", "joke"] = Field(
        None, description="The next step in the routing process"
    )


# Augment the LLM with schema for structured output
router = llm.with_structured_output(Route)


# State
class State(TypedDict):
    input: str
    decision: str
    output: str


# Nodes
def llm_call_1(state: State):
    """Write a story"""

    result = llm.invoke(state["input"])
    return {"output": result.content}


def llm_call_2(state: State):
    """Write a joke"""

    result = llm.invoke(state["input"])
    return {"output": result.content}


def llm_call_3(state: State):
    """Write a poem"""

    result = llm.invoke(state["input"])
    return {"output": result.content}


def llm_call_router(state: State):
    """Route the input to the appropriate node"""

    # Run the augmented LLM with structured output to serve as routing logic
    decision = router.invoke(
        [
            SystemMessage(
                content="Route the input to story, joke, or poem based on the user's request."
            ),
            HumanMessage(content=state["input"]),
        ]
    )

    return {"decision": decision.step}


# Conditional edge function to route to the appropriate node
def route_decision(state: State):
    # Return the node name you want to visit next
    if state["decision"] == "story":
        return "llm_call_1"
    elif state["decision"] == "joke":
        return "llm_call_2"
    elif state["decision"] == "poem":
        return "llm_call_3"


# Build workflow
router_builder = StateGraph(State)

# Add nodes
router_builder.add_node("llm_call_1", llm_call_1)
router_builder.add_node("llm_call_2", llm_call_2)
router_builder.add_node("llm_call_3", llm_call_3)
router_builder.add_node("llm_call_router", llm_call_router)

# Add edges to connect nodes
router_builder.add_edge(START, "llm_call_router")
router_builder.add_conditional_edges(
    "llm_call_router",
    route_decision,
    {  # Name returned by route_decision : Name of next node to visit
        "llm_call_1": "llm_call_1",
        "llm_call_2": "llm_call_2",
        "llm_call_3": "llm_call_3",
    },
)
router_builder.add_edge("llm_call_1", END)
router_builder.add_edge("llm_call_2", END)
router_builder.add_edge("llm_call_3", END)

# Compile workflow
router_workflow = router_builder.compile()

# Show the workflow
display(Image(router_workflow.get_graph().draw_mermaid_png()))

# Invoke
state = router_workflow.invoke({"input": "Write me a joke about cats"})
print(state["output"])

LangSmith 追踪

https://smith.langchain.com/public/c4580b74-fe91-47e4-96fe-7fac598d509c/r

资源

LangChain 学院

请参阅我们关于路由的课程 此处

示例

此处是 RAG 工作流,用于路由问题。请观看我们的视频此处

from typing_extensions import Literal
from pydantic import BaseModel
from langchain_core.messages import HumanMessage, SystemMessage


# Schema for structured output to use as routing logic
class Route(BaseModel):
    step: Literal["poem", "story", "joke"] = Field(
        None, description="The next step in the routing process"
    )


# Augment the LLM with schema for structured output
router = llm.with_structured_output(Route)


@task
def llm_call_1(input_: str):
    """Write a story"""
    result = llm.invoke(input_)
    return result.content


@task
def llm_call_2(input_: str):
    """Write a joke"""
    result = llm.invoke(input_)
    return result.content


@task
def llm_call_3(input_: str):
    """Write a poem"""
    result = llm.invoke(input_)
    return result.content


def llm_call_router(input_: str):
    """Route the input to the appropriate node"""
    # Run the augmented LLM with structured output to serve as routing logic
    decision = router.invoke(
        [
            SystemMessage(
                content="Route the input to story, joke, or poem based on the user's request."
            ),
            HumanMessage(content=input_),
        ]
    )
    return decision.step


# Create workflow
@entrypoint()
def router_workflow(input_: str):
    next_step = llm_call_router(input_)
    if next_step == "story":
        llm_call = llm_call_1
    elif next_step == "joke":
        llm_call = llm_call_2
    elif next_step == "poem":
        llm_call = llm_call_3

    return llm_call(input_).result()

# Invoke
for step in router_workflow.stream("Write me a joke about cats", stream_mode="updates"):
    print(step)
    print("\n")

LangSmith 追踪

https://smith.langchain.com/public/5e2eb979-82dd-402c-b1a0-a8cceaf2a28a/r

协调器-工作器

通过协调器-工作器,协调器分解任务并将每个子任务委派给工作器。正如 Anthropic 博客 中指出的那样

在协调器-工作器工作流中,中央 LLM 动态分解任务,将其委派给工作器 LLM,并综合其结果。

何时使用此工作流:此工作流非常适合您无法预测所需子任务的复杂任务(例如,在编码中,需要更改的文件数量以及每个文件中更改的性质可能取决于任务)。虽然它在地形上相似,但与并行化的主要区别在于其灵活性——子任务不是预定义的,而是由协调器根据特定输入确定的。

worker.png

from typing import Annotated, List
import operator


# Schema for structured output to use in planning
class Section(BaseModel):
    name: str = Field(
        description="Name for this section of the report.",
    )
    description: str = Field(
        description="Brief overview of the main topics and concepts to be covered in this section.",
    )


class Sections(BaseModel):
    sections: List[Section] = Field(
        description="Sections of the report.",
    )


# Augment the LLM with schema for structured output
planner = llm.with_structured_output(Sections)

在 LangGraph 中创建工作器

由于协调器-工作器工作流很常见,LangGraph 具有 Send API 来支持此功能。它允许您动态创建工作器节点并将每个节点发送到特定输入。每个工作器都有自己的状态,所有工作器输出都写入共享状态键,协调器图可以访问该键。这使协调器可以访问所有工作器输出,并允许其将它们合成为最终输出。正如您在下面看到的,我们迭代一个部分列表并将每个部分 Send 到一个工作器节点。请参阅更多文档此处此处

from langgraph.constants import Send


# Graph state
class State(TypedDict):
    topic: str  # Report topic
    sections: list[Section]  # List of report sections
    completed_sections: Annotated[
        list, operator.add
    ]  # All workers write to this key in parallel
    final_report: str  # Final report


# Worker state
class WorkerState(TypedDict):
    section: Section
    completed_sections: Annotated[list, operator.add]


# Nodes
def orchestrator(state: State):
    """Orchestrator that generates a plan for the report"""

    # Generate queries
    report_sections = planner.invoke(
        [
            SystemMessage(content="Generate a plan for the report."),
            HumanMessage(content=f"Here is the report topic: {state['topic']}"),
        ]
    )

    return {"sections": report_sections.sections}


def llm_call(state: WorkerState):
    """Worker writes a section of the report"""

    # Generate section
    section = llm.invoke(
        [
            SystemMessage(
                content="Write a report section following the provided name and description. Include no preamble for each section. Use markdown formatting."
            ),
            HumanMessage(
                content=f"Here is the section name: {state['section'].name} and description: {state['section'].description}"
            ),
        ]
    )

    # Write the updated section to completed sections
    return {"completed_sections": [section.content]}


def synthesizer(state: State):
    """Synthesize full report from sections"""

    # List of completed sections
    completed_sections = state["completed_sections"]

    # Format completed section to str to use as context for final sections
    completed_report_sections = "\n\n---\n\n".join(completed_sections)

    return {"final_report": completed_report_sections}


# Conditional edge function to create llm_call workers that each write a section of the report
def assign_workers(state: State):
    """Assign a worker to each section in the plan"""

    # Kick off section writing in parallel via Send() API
    return [Send("llm_call", {"section": s}) for s in state["sections"]]


# Build workflow
orchestrator_worker_builder = StateGraph(State)

# Add the nodes
orchestrator_worker_builder.add_node("orchestrator", orchestrator)
orchestrator_worker_builder.add_node("llm_call", llm_call)
orchestrator_worker_builder.add_node("synthesizer", synthesizer)

# Add edges to connect nodes
orchestrator_worker_builder.add_edge(START, "orchestrator")
orchestrator_worker_builder.add_conditional_edges(
    "orchestrator", assign_workers, ["llm_call"]
)
orchestrator_worker_builder.add_edge("llm_call", "synthesizer")
orchestrator_worker_builder.add_edge("synthesizer", END)

# Compile the workflow
orchestrator_worker = orchestrator_worker_builder.compile()

# Show the workflow
display(Image(orchestrator_worker.get_graph().draw_mermaid_png()))

# Invoke
state = orchestrator_worker.invoke({"topic": "Create a report on LLM scaling laws"})

from IPython.display import Markdown
Markdown(state["final_report"])

LangSmith 追踪

https://smith.langchain.com/public/78cbcfc3-38bf-471d-b62a-b299b144237d/r

资源

LangChain 学院

请参阅我们关于协调器-工作器的课程 此处

示例

此处是一个使用协调器-工作器进行报告计划和编写的项目。请观看我们的视频此处

from typing import List


# Schema for structured output to use in planning
class Section(BaseModel):
    name: str = Field(
        description="Name for this section of the report.",
    )
    description: str = Field(
        description="Brief overview of the main topics and concepts to be covered in this section.",
    )


class Sections(BaseModel):
    sections: List[Section] = Field(
        description="Sections of the report.",
    )


# Augment the LLM with schema for structured output
planner = llm.with_structured_output(Sections)


@task
def orchestrator(topic: str):
    """Orchestrator that generates a plan for the report"""
    # Generate queries
    report_sections = planner.invoke(
        [
            SystemMessage(content="Generate a plan for the report."),
            HumanMessage(content=f"Here is the report topic: {topic}"),
        ]
    )

    return report_sections.sections


@task
def llm_call(section: Section):
    """Worker writes a section of the report"""

    # Generate section
    result = llm.invoke(
        [
            SystemMessage(content="Write a report section."),
            HumanMessage(
                content=f"Here is the section name: {section.name} and description: {section.description}"
            ),
        ]
    )

    # Write the updated section to completed sections
    return result.content


@task
def synthesizer(completed_sections: list[str]):
    """Synthesize full report from sections"""
    final_report = "\n\n---\n\n".join(completed_sections)
    return final_report


@entrypoint()
def orchestrator_worker(topic: str):
    sections = orchestrator(topic).result()
    section_futures = [llm_call(section) for section in sections]
    final_report = synthesizer(
        [section_fut.result() for section_fut in section_futures]
    ).result()
    return final_report

# Invoke
report = orchestrator_worker.invoke("Create a report on LLM scaling laws")
from IPython.display import Markdown
Markdown(report)

LangSmith 追踪

https://smith.langchain.com/public/75a636d0-6179-4a12-9836-e0aa571e87c5/r

评估器-优化器

在评估器-优化器工作流中,一个 LLM 调用生成响应,而另一个 LLM 调用在循环中提供评估和反馈

在评估器-优化器工作流中,一个 LLM 调用生成响应,而另一个 LLM 调用在循环中提供评估和反馈。

何时使用此工作流:当我们有明确的评估标准,并且迭代改进提供可衡量的价值时,此工作流尤其有效。良好契合的两个标志是,首先,当人类表达他们的反馈时,LLM 响应可以得到明显的改进;其次,LLM 可以提供此类反馈。这类似于人类作家在制作精美文档时可能经历的迭代写作过程。

evaluator_optimizer.png

# Graph state
class State(TypedDict):
    joke: str
    topic: str
    feedback: str
    funny_or_not: str


# Schema for structured output to use in evaluation
class Feedback(BaseModel):
    grade: Literal["funny", "not funny"] = Field(
        description="Decide if the joke is funny or not.",
    )
    feedback: str = Field(
        description="If the joke is not funny, provide feedback on how to improve it.",
    )


# Augment the LLM with schema for structured output
evaluator = llm.with_structured_output(Feedback)


# Nodes
def llm_call_generator(state: State):
    """LLM generates a joke"""

    if state.get("feedback"):
        msg = llm.invoke(
            f"Write a joke about {state['topic']} but take into account the feedback: {state['feedback']}"
        )
    else:
        msg = llm.invoke(f"Write a joke about {state['topic']}")
    return {"joke": msg.content}


def llm_call_evaluator(state: State):
    """LLM evaluates the joke"""

    grade = evaluator.invoke(f"Grade the joke {state['joke']}")
    return {"funny_or_not": grade.grade, "feedback": grade.feedback}


# Conditional edge function to route back to joke generator or end based upon feedback from the evaluator
def route_joke(state: State):
    """Route back to joke generator or end based upon feedback from the evaluator"""

    if state["funny_or_not"] == "funny":
        return "Accepted"
    elif state["funny_or_not"] == "not funny":
        return "Rejected + Feedback"


# Build workflow
optimizer_builder = StateGraph(State)

# Add the nodes
optimizer_builder.add_node("llm_call_generator", llm_call_generator)
optimizer_builder.add_node("llm_call_evaluator", llm_call_evaluator)

# Add edges to connect nodes
optimizer_builder.add_edge(START, "llm_call_generator")
optimizer_builder.add_edge("llm_call_generator", "llm_call_evaluator")
optimizer_builder.add_conditional_edges(
    "llm_call_evaluator",
    route_joke,
    {  # Name returned by route_joke : Name of next node to visit
        "Accepted": END,
        "Rejected + Feedback": "llm_call_generator",
    },
)

# Compile the workflow
optimizer_workflow = optimizer_builder.compile()

# Show the workflow
display(Image(optimizer_workflow.get_graph().draw_mermaid_png()))

# Invoke
state = optimizer_workflow.invoke({"topic": "Cats"})
print(state["joke"])

LangSmith 追踪

https://smith.langchain.com/public/86ab3e60-2000-4bff-b988-9b89a3269789/r

资源

示例

此处是一个助手,它使用评估器-优化器来改进报告。请观看我们的视频此处

此处是一个 RAG 工作流,用于对幻觉或错误的答案进行评分。请观看我们的视频此处

# Schema for structured output to use in evaluation
class Feedback(BaseModel):
    grade: Literal["funny", "not funny"] = Field(
        description="Decide if the joke is funny or not.",
    )
    feedback: str = Field(
        description="If the joke is not funny, provide feedback on how to improve it.",
    )


# Augment the LLM with schema for structured output
evaluator = llm.with_structured_output(Feedback)


# Nodes
@task
def llm_call_generator(topic: str, feedback: Feedback):
    """LLM generates a joke"""
    if feedback:
        msg = llm.invoke(
            f"Write a joke about {topic} but take into account the feedback: {feedback}"
        )
    else:
        msg = llm.invoke(f"Write a joke about {topic}")
    return msg.content


@task
def llm_call_evaluator(joke: str):
    """LLM evaluates the joke"""
    feedback = evaluator.invoke(f"Grade the joke {joke}")
    return feedback


@entrypoint()
def optimizer_workflow(topic: str):
    feedback = None
    while True:
        joke = llm_call_generator(topic, feedback).result()
        feedback = llm_call_evaluator(joke).result()
        if feedback.grade == "funny":
            break

    return joke

# Invoke
for step in optimizer_workflow.stream("Cats", stream_mode="updates"):
    print(step)
    print("\n")

LangSmith 追踪

https://smith.langchain.com/public/f66830be-4339-4a6b-8a93-389ce5ae27b4/r

代理

代理通常实现为 LLM 基于循环中的环境反馈执行操作(通过工具调用)。正如 Anthropic 博客 中指出的那样

代理可以处理复杂的任务,但它们的实现通常很简单。它们通常只是 LLM 基于循环中的环境反馈使用工具。因此,明确和周到地设计工具集及其文档至关重要。

何时使用代理:代理可用于开放式问题,在这些问题中,很难或不可能预测所需的步骤数,并且您无法硬编码固定路径。LLM 可能会运行很多轮,您必须对其决策制定有一定的信任度。代理的自主性使其成为在受信任环境中扩展任务的理想选择。

agent.png

from langchain_core.tools import tool


# Define tools
@tool
def multiply(a: int, b: int) -> int:
    """Multiply a and b.

    Args:
        a: first int
        b: second int
    """
    return a * b


@tool
def add(a: int, b: int) -> int:
    """Adds a and b.

    Args:
        a: first int
        b: second int
    """
    return a + b


@tool
def divide(a: int, b: int) -> float:
    """Divide a and b.

    Args:
        a: first int
        b: second int
    """
    return a / b


# Augment the LLM with tools
tools = [add, multiply, divide]
tools_by_name = {tool.name: tool for tool in tools}
llm_with_tools = llm.bind_tools(tools)

API 参考:tool

from langgraph.graph import MessagesState
from langchain_core.messages import SystemMessage, HumanMessage, ToolMessage


# Nodes
def llm_call(state: MessagesState):
    """LLM decides whether to call a tool or not"""

    return {
        "messages": [
            llm_with_tools.invoke(
                [
                    SystemMessage(
                        content="You are a helpful assistant tasked with performing arithmetic on a set of inputs."
                    )
                ]
                + state["messages"]
            )
        ]
    }


def tool_node(state: dict):
    """Performs the tool call"""

    result = []
    for tool_call in state["messages"][-1].tool_calls:
        tool = tools_by_name[tool_call["name"]]
        observation = tool.invoke(tool_call["args"])
        result.append(ToolMessage(content=observation, tool_call_id=tool_call["id"]))
    return {"messages": result}


# Conditional edge function to route to the tool node or end based upon whether the LLM made a tool call
def should_continue(state: MessagesState) -> Literal["environment", END]:
    """Decide if we should continue the loop or stop based upon whether the LLM made a tool call"""

    messages = state["messages"]
    last_message = messages[-1]
    # If the LLM makes a tool call, then perform an action
    if last_message.tool_calls:
        return "Action"
    # Otherwise, we stop (reply to the user)
    return END


# Build workflow
agent_builder = StateGraph(MessagesState)

# Add nodes
agent_builder.add_node("llm_call", llm_call)
agent_builder.add_node("environment", tool_node)

# Add edges to connect nodes
agent_builder.add_edge(START, "llm_call")
agent_builder.add_conditional_edges(
    "llm_call",
    should_continue,
    {
        # Name returned by should_continue : Name of next node to visit
        "Action": "environment",
        END: END,
    },
)
agent_builder.add_edge("environment", "llm_call")

# Compile the agent
agent = agent_builder.compile()

# Show the agent
display(Image(agent.get_graph(xray=True).draw_mermaid_png()))

# Invoke
messages = [HumanMessage(content="Add 3 and 4.")]
messages = agent.invoke({"messages": messages})
for m in messages["messages"]:
    m.pretty_print()

LangSmith 追踪

https://smith.langchain.com/public/051f0391-6761-4f8c-a53b-22231b016690/r

资源

LangChain 学院

请参阅我们关于代理的课程 此处

示例

此处是一个使用工具调用代理来创建/存储长期记忆的项目。

from langgraph.graph import add_messages
from langchain_core.messages import (
    SystemMessage,
    HumanMessage,
    BaseMessage,
    ToolCall,
)


@task
def call_llm(messages: list[BaseMessage]):
    """LLM decides whether to call a tool or not"""
    return llm_with_tools.invoke(
        [
            SystemMessage(
                content="You are a helpful assistant tasked with performing arithmetic on a set of inputs."
            )
        ]
        + messages
    )


@task
def call_tool(tool_call: ToolCall):
    """Performs the tool call"""
    tool = tools_by_name[tool_call["name"]]
    return tool.invoke(tool_call)


@entrypoint()
def agent(messages: list[BaseMessage]):
    llm_response = call_llm(messages).result()

    while True:
        if not llm_response.tool_calls:
            break

        # Execute tools
        tool_result_futures = [
            call_tool(tool_call) for tool_call in llm_response.tool_calls
        ]
        tool_results = [fut.result() for fut in tool_result_futures]
        messages = add_messages(messages, [llm_response, *tool_results])
        llm_response = call_llm(messages).result()

    messages = add_messages(messages, llm_response)
    return messages

# Invoke
messages = [HumanMessage(content="Add 3 and 4.")]
for chunk in agent.stream(messages, stream_mode="updates"):
    print(chunk)
    print("\n")

LangSmith 追踪

https://smith.langchain.com/public/42ae8bf9-3935-4504-a081-8ddbcbfc8b2e/r

预构建

LangGraph 还提供了一种预构建方法,用于创建如上定义的代理(使用 create_react_agent 函数)

https://github.langchain.ac.cn/langgraph/how-tos/create-react-agent/

from langgraph.prebuilt import create_react_agent

# Pass in:
# (1) the augmented LLM with tools
# (2) the tools list (which is used to create the tool node)
pre_built_agent = create_react_agent(llm, tools=tools)

# Show the agent
display(Image(pre_built_agent.get_graph().draw_mermaid_png()))

# Invoke
messages = [HumanMessage(content="Add 3 and 4.")]
messages = pre_built_agent.invoke({"messages": messages})
for m in messages["messages"]:
    m.pretty_print()

API 参考:create_react_agent

LangSmith 追踪

https://smith.langchain.com/public/abab6a44-29f6-4b97-8164-af77413e494d/r

LangGraph 提供的功能

通过在 LangGraph 中构建上述每项功能,我们获得了一些东西

持久性:人机环路

LangGraph 持久性层支持操作的中断和批准(例如,人机环路)。请参阅LangChain 学院的模块 3

持久性:内存

LangGraph 持久性层支持对话(短期)内存和长期内存。请参阅 LangChain 学院的模块 2 和 5

流式处理

LangGraph 提供了几种流式传输工作流/代理输出或中间状态的方法。请参阅LangChain 学院的模块 3

部署

LangGraph 为部署、可观察性和评估提供了一个简单的入门通道。请参阅 LangChain 学院的模块 6

评论