如何设置 LangGraph.js 应用程序以进行部署¶
一个 LangGraph.js 应用程序必须配置一个 LangGraph API 配置文件 才能部署到 LangGraph Cloud(或进行自托管)。本操作指南讨论了使用 package.json
指定项目依赖项来设置 LangGraph.js 应用程序以进行部署的基本步骤。
本演练基于 此存储库,您可以试用它以了解更多关于如何设置您的 LangGraph 应用程序以进行部署的信息。
最终的仓库结构将如下所示
my-app/
├── src # all project code lies within here
│ ├── utils # optional utilities for your graph
│ │ ├── tools.ts # tools for your graph
│ │ ├── nodes.ts # node functions for you graph
│ │ └── state.ts # state definition of your graph
│ └── agent.ts # code for constructing your graph
├── package.json # package dependencies
├── .env # environment variables
└── langgraph.json # configuration file for LangGraph
在每个步骤之后,都提供了一个示例文件目录,以演示如何组织代码。
指定依赖项¶
依赖项可以在 package.json
中指定。如果未创建这些文件,则可以在稍后的 LangGraph API 配置文件中指定依赖项。
package.json
文件示例
{
"name": "langgraphjs-studio-starter",
"packageManager": "yarn@1.22.22",
"dependencies": {
"@langchain/community": "^0.2.31",
"@langchain/core": "^0.2.31",
"@langchain/langgraph": "^0.2.0",
"@langchain/openai": "^0.2.8"
}
}
文件目录示例
指定环境变量¶
环境变量可以选择在文件中指定(例如 .env
)。请参阅 环境变量参考 以配置部署的其他变量。
.env
文件示例
文件目录示例
定义图¶
实现您的图!图可以在单个文件或多个文件中定义。请注意每个已编译图的变量名,以便包含在 LangGraph 应用程序中。变量名将在稍后创建 LangGraph API 配置文件时使用。
这是一个 agent.ts
示例
import type { AIMessage } from "@langchain/core/messages";
import { TavilySearchResults } from "@langchain/community/tools/tavily_search";
import { ChatOpenAI } from "@langchain/openai";
import { MessagesAnnotation, StateGraph } from "@langchain/langgraph";
import { ToolNode } from "@langchain/langgraph/prebuilt";
const tools = [
new TavilySearchResults({ maxResults: 3, }),
];
// Define the function that calls the model
async function callModel(
state: typeof MessagesAnnotation.State,
) {
/**
* Call the LLM powering our agent.
* Feel free to customize the prompt, model, and other logic!
*/
const model = new ChatOpenAI({
model: "gpt-4o",
}).bindTools(tools);
const response = await model.invoke([
{
role: "system",
content: `You are a helpful assistant. The current date is ${new Date().getTime()}.`
},
...state.messages
]);
// MessagesAnnotation supports returning a single message or array of messages
return { messages: response };
}
// Define the function that determines whether to continue or not
function routeModelOutput(state: typeof MessagesAnnotation.State) {
const messages = state.messages;
const lastMessage: AIMessage = messages[messages.length - 1];
// If the LLM is invoking tools, route there.
if ((lastMessage?.tool_calls?.length ?? 0) > 0) {
return "tools";
}
// Otherwise end the graph.
return "__end__";
}
// Define a new graph.
// See https://github.langchain.ac.cn/langgraphjs/how-tos/define-state/#getting-started for
// more on defining custom graph states.
const workflow = new StateGraph(MessagesAnnotation)
// Define the two nodes we will cycle between
.addNode("callModel", callModel)
.addNode("tools", new ToolNode(tools))
// Set the entrypoint as `callModel`
// This means that this node is the first one called
.addEdge("__start__", "callModel")
.addConditionalEdges(
// First, we define the edges' source node. We use `callModel`.
// This means these are the edges taken after the `callModel` node is called.
"callModel",
// Next, we pass in the function that will determine the sink node(s), which
// will be called after the source node is called.
routeModelOutput,
// List of the possible destinations the conditional edge can route to.
// Required for conditional edges to properly render the graph in Studio
[
"tools",
"__end__"
],
)
// This means that after `tools` is called, `callModel` node is called next.
.addEdge("tools", "callModel");
// Finally, we compile it!
// This compiles it into a graph you can invoke and deploy.
export const graph = workflow.compile();
将 CompiledGraph
分配给变量
LangGraph Cloud 的构建过程要求将 CompiledGraph
对象分配给 JavaScript 模块顶层的变量(或者,您可以提供创建图的函数)。
文件目录示例
my-app/
├── src # all project code lies within here
│ ├── utils # optional utilities for your graph
│ │ ├── tools.ts # tools for your graph
│ │ ├── nodes.ts # node functions for you graph
│ │ └── state.ts # state definition of your graph
│ └── agent.ts # code for constructing your graph
├── package.json # package dependencies
├── .env # environment variables
└── langgraph.json # configuration file for LangGraph
创建 LangGraph API 配置¶
创建一个名为 langgraph.json
的 LangGraph API 配置文件。请参阅 LangGraph CLI 参考 以获取配置文件 JSON 对象中每个键的详细说明。
langgraph.json
文件示例
{
"node_version": "20",
"dockerfile_lines": [],
"dependencies": ["."],
"graphs": {
"agent": "./src/agent.ts:graph"
},
"env": ".env"
}
请注意,CompiledGraph
的变量名出现在顶级 graphs
键中每个子键的值的末尾(即 :<variable_name>
)。
配置位置
LangGraph API 配置文件必须放置在与包含已编译图和相关依赖项的 TypeScript 文件同级或更高级别的目录中。
下一步¶
在您设置好项目并将其放置在 github 仓库中后,就可以部署您的应用程序了。