跳到内容

流式输出

流式 API

LangGraph SDK 允许您从 LangGraph API 服务器流式传输输出。

基本使用示例

from langgraph_sdk import get_client
client = get_client(url=<DEPLOYMENT_URL>, api_key=<API_KEY>)

# Using the graph deployed with the name "agent"
assistant_id = "agent"

# create a thread
thread = await client.threads.create()
thread_id = thread["thread_id"]

# create a streaming run
async for chunk in client.runs.stream(
    thread_id,
    assistant_id,
    input=inputs,
    stream_mode="updates"
):
    print(chunk.data)
import { Client } from "@langchain/langgraph-sdk";
const client = new Client({ apiUrl: <DEPLOYMENT_URL>, apiKey: <API_KEY> });

// Using the graph deployed with the name "agent"
const assistantID = "agent";

// create a thread
const thread = await client.threads.create();
const threadID = thread["thread_id"];

// create a streaming run
const streamResponse = client.runs.stream(
  threadID,
  assistantID,
  {
    input,
    streamMode: "updates"
  }
);
for await (const chunk of streamResponse) {
  console.log(chunk.data);
}

创建线程

curl --request POST \
--url <DEPLOYMENT_URL>/threads \
--header 'Content-Type: application/json' \
--data '{}'

创建流式运行

curl --request POST \
--url <DEPLOYMENT_URL>/threads/<THREAD_ID>/runs/stream \
--header 'Content-Type: application/json' \
--header 'x-api-key: <API_KEY>'
--data "{
  \"assistant_id\": \"agent\",
  \"input\": <inputs>,
  \"stream_mode\": \"updates\"
}"
扩展示例:流式更新

这是一个您可以在 LangGraph API 服务器中运行的示例图。有关更多详细信息,请参阅LangGraph 平台快速入门

# graph.py
from typing import TypedDict
from langgraph.graph import StateGraph, START, END

class State(TypedDict):
    topic: str
    joke: str

def refine_topic(state: State):
    return {"topic": state["topic"] + " and cats"}

def generate_joke(state: State):
    return {"joke": f"This is a joke about {state['topic']}"}

graph = (
    StateGraph(State)
    .add_node(refine_topic)
    .add_node(generate_joke)
    .add_edge(START, "refine_topic")
    .add_edge("refine_topic", "generate_joke")
    .add_edge("generate_joke", END)
    .compile()
)

一旦您有一个正在运行的 LangGraph API 服务器,您就可以使用 LangGraph SDK 与之交互。

from langgraph_sdk import get_client
client = get_client(url=<DEPLOYMENT_URL>)

# Using the graph deployed with the name "agent"
assistant_id = "agent"

# create a thread
thread = await client.threads.create()
thread_id = thread["thread_id"]

# create a streaming run
async for chunk in client.runs.stream(  # (1)!
    thread_id,
    assistant_id,
    input={"topic": "ice cream"},
    stream_mode="updates"  # (2)!
):
    print(chunk.data)
  1. client.runs.stream() 方法返回一个迭代器,该迭代器生成流式输出。
  2. 设置 stream_mode="updates" 以在每个节点之后仅流式传输图状态的更新。其他流模式也可用。有关详细信息,请参阅支持的流模式
import { Client } from "@langchain/langgraph-sdk";
const client = new Client({ apiUrl: <DEPLOYMENT_URL> });

// Using the graph deployed with the name "agent"
const assistantID = "agent";

// create a thread
const thread = await client.threads.create();
const threadID = thread["thread_id"];

// create a streaming run
const streamResponse = client.runs.stream(  // (1)!
  threadID,
  assistantID,
  {
    input: { topic: "ice cream" },
    streamMode: "updates"  // (2)!
  }
);
for await (const chunk of streamResponse) {
  console.log(chunk.data);
}
  1. client.runs.stream() 方法返回一个迭代器,该迭代器生成流式输出。
  2. 设置 streamMode: "updates" 以在每个节点之后仅流式传输图状态的更新。其他流模式也可用。有关详细信息,请参阅支持的流模式

创建线程

curl --request POST \
--url <DEPLOYMENT_URL>/threads \
--header 'Content-Type: application/json' \
--data '{}'

创建流式运行

curl --request POST \
--url <DEPLOYMENT_URL>/threads/<THREAD_ID>/runs/stream \
--header 'Content-Type: application/json' \
--data "{
  \"assistant_id\": \"agent\",
  \"input\": {\"topic\": \"ice cream\"},
  \"stream_mode\": \"updates\"
}"
{'run_id': '1f02c2b3-3cef-68de-b720-eec2a4a8e920', 'attempt': 1}
{'refine_topic': {'topic': 'ice cream and cats'}}
{'generate_joke': {'joke': 'This is a joke about ice cream and cats'}}

支持的流模式

模式 描述 LangGraph 库方法
在每个超级步骤之后流式传输完整的图状态。 .stream() / .astream()stream_mode="values"
更新 在图的每个步骤之后流式传输状态的更新。如果同一步骤中进行了多次更新(例如,运行了多个节点),这些更新将单独流式传输。 .stream() / .astream()stream_mode="updates"
消息元组 流式传输 LLM 令牌和调用 LLM 的图节点的元数据(对聊天应用很有用)。 .stream() / .astream()stream_mode="messages"
调试 在图的执行过程中尽可能多地流式传输信息。 .stream() / .astream()stream_mode="debug"
自定义 从您的图内部流式传输自定义数据 .stream() / .astream()stream_mode="custom"
事件 流式传输所有事件(包括图的状态);主要在迁移大型 LCEL 应用时有用。 .astream_events()

流式传输多种模式

您可以将列表作为 stream_mode 参数传递,以同时流式传输多种模式。

流式输出将是 (mode, chunk) 的元组,其中 mode 是流模式的名称,chunk 是该模式流式传输的数据。

async for chunk in client.runs.stream(
    thread_id,
    assistant_id,
    input=inputs,
    stream_mode=["updates", "custom"]
):
    print(chunk)
const streamResponse = client.runs.stream(
  threadID,
  assistantID,
  {
    input,
    streamMode: ["updates", "custom"]
  }
);
for await (const chunk of streamResponse) {
  console.log(chunk);
}
curl --request POST \
 --url <DEPLOYMENT_URL>/threads/<THREAD_ID>/runs/stream \
 --header 'Content-Type: application/json' \
 --data "{
   \"assistant_id\": \"agent\",
   \"input\": <inputs>,
   \"stream_mode\": [
     \"updates\"
     \"custom\"
   ]
 }"

流式传输图状态

使用 updatesvalues 流模式来流式传输图在执行时的状态。

  • updates 流式传输图的每个步骤之后状态的更新
  • values 流式传输图的每个步骤之后状态的完整值
示例图
from typing import TypedDict
from langgraph.graph import StateGraph, START, END

class State(TypedDict):
  topic: str
  joke: str

def refine_topic(state: State):
    return {"topic": state["topic"] + " and cats"}

def generate_joke(state: State):
    return {"joke": f"This is a joke about {state['topic']}"}

graph = (
  StateGraph(State)
  .add_node(refine_topic)
  .add_node(generate_joke)
  .add_edge(START, "refine_topic")
  .add_edge("refine_topic", "generate_joke")
  .add_edge("generate_joke", END)
  .compile()
)

有状态运行

以下示例假设您希望将流式运行的输出持久化检查点 数据库中并已创建线程。要创建线程

from langgraph_sdk import get_client
client = get_client(url=<DEPLOYMENT_URL>)

# Using the graph deployed with the name "agent"
assistant_id = "agent"
# create a thread
thread = await client.threads.create()
thread_id = thread["thread_id"]
import { Client } from "@langchain/langgraph-sdk";
const client = new Client({ apiUrl: <DEPLOYMENT_URL> });

// Using the graph deployed with the name "agent"
const assistantID = "agent";
// create a thread
const thread = await client.threads.create();
const threadID = thread["thread_id"]
curl --request POST \
--url <DEPLOYMENT_URL>/threads \
--header 'Content-Type: application/json' \
--data '{}'

如果您不需要持久化运行的输出,您可以在流式传输时传递 None 而不是 thread_id

使用此选项仅流式传输每个步骤后节点返回的状态更新。流式输出包括节点的名称以及更新。

async for chunk in client.runs.stream(
    thread_id,
    assistant_id,
    input={"topic": "ice cream"},
    stream_mode="updates"
):
    print(chunk.data)
const streamResponse = client.runs.stream(
  threadID,
  assistantID,
  {
    input: { topic: "ice cream" },
    streamMode: "updates"
  }
);
for await (const chunk of streamResponse) {
  console.log(chunk.data);
}
curl --request POST \
--url <DEPLOYMENT_URL>/threads/<THREAD_ID>/runs/stream \
--header 'Content-Type: application/json' \
--data "{
  \"assistant_id\": \"agent\",
  \"input\": {\"topic\": \"ice cream\"},
  \"stream_mode\": \"updates\"
}"

使用此选项在每个步骤后流式传输图的完整状态

async for chunk in client.runs.stream(
    thread_id,
    assistant_id,
    input={"topic": "ice cream"},
    stream_mode="values"
):
    print(chunk.data)
const streamResponse = client.runs.stream(
  threadID,
  assistantID,
  {
    input: { topic: "ice cream" },
    streamMode: "values"
  }
);
for await (const chunk of streamResponse) {
  console.log(chunk.data);
}
curl --request POST \
--url <DEPLOYMENT_URL>/threads/<THREAD_ID>/runs/stream \
--header 'Content-Type: application/json' \
--data "{
  \"assistant_id\": \"agent\",
  \"input\": {\"topic\": \"ice cream\"},
  \"stream_mode\": \"values\"
}"

子图

要在流式输出中包含来自子图的输出,您可以在父图的 .stream() 方法中设置 subgraphs=True。这将同时流式传输父图和任何子图的输出。

for chunk in client.runs.stream(
    thread_id,
    assistant_id,
    input={"foo": "foo"},
    stream_subgraphs=True, # (1)!
    stream_mode="updates",
):
    print(chunk)
  1. 设置 stream_subgraphs=True 以流式传输来自子图的输出。
扩展示例:从子图流式传输

这是一个您可以在 LangGraph API 服务器中运行的示例图。有关更多详细信息,请参阅LangGraph 平台快速入门

# graph.py
from langgraph.graph import START, StateGraph
from typing import TypedDict

# Define subgraph
class SubgraphState(TypedDict):
    foo: str  # note that this key is shared with the parent graph state
    bar: str

def subgraph_node_1(state: SubgraphState):
    return {"bar": "bar"}

def subgraph_node_2(state: SubgraphState):
    return {"foo": state["foo"] + state["bar"]}

subgraph_builder = StateGraph(SubgraphState)
subgraph_builder.add_node(subgraph_node_1)
subgraph_builder.add_node(subgraph_node_2)
subgraph_builder.add_edge(START, "subgraph_node_1")
subgraph_builder.add_edge("subgraph_node_1", "subgraph_node_2")
subgraph = subgraph_builder.compile()

# Define parent graph
class ParentState(TypedDict):
    foo: str

def node_1(state: ParentState):
    return {"foo": "hi! " + state["foo"]}

builder = StateGraph(ParentState)
builder.add_node("node_1", node_1)
builder.add_node("node_2", subgraph)
builder.add_edge(START, "node_1")
builder.add_edge("node_1", "node_2")
graph = builder.compile()

一旦您有一个正在运行的 LangGraph API 服务器,您就可以使用 LangGraph SDK 与之交互。

from langgraph_sdk import get_client
client = get_client(url=<DEPLOYMENT_URL>)

# Using the graph deployed with the name "agent"
assistant_id = "agent"

# create a thread
thread = await client.threads.create()
thread_id = thread["thread_id"]

async for chunk in client.runs.stream(
    thread_id,
    assistant_id,
    input={"foo": "foo"},
    stream_subgraphs=True, # (1)!
    stream_mode="updates",
):
    print(chunk)
  1. 设置 stream_subgraphs=True 以流式传输来自子图的输出。
import { Client } from "@langchain/langgraph-sdk";
const client = new Client({ apiUrl: <DEPLOYMENT_URL> });

// Using the graph deployed with the name "agent"
const assistantID = "agent";

// create a thread
const thread = await client.threads.create();
const threadID = thread["thread_id"];

// create a streaming run
const streamResponse = client.runs.stream(
  threadID,
  assistantID,
  {
    input: { foo: "foo" },
    streamSubgraphs: true,  // (1)!
    streamMode: "updates"
  }
);
for await (const chunk of streamResponse) {
  console.log(chunk);
}
  1. 设置 streamSubgraphs: true 以流式传输来自子图的输出。

创建线程

curl --request POST \
--url <DEPLOYMENT_URL>/threads \
--header 'Content-Type: application/json' \
--data '{}'

创建流式运行

curl --request POST \
--url <DEPLOYMENT_URL>/threads/<THREAD_ID>/runs/stream \
--header 'Content-Type: application/json' \
--data "{
  \"assistant_id\": \"agent\",
  \"input\": {\"foo\": \"foo\"},
  \"stream_subgraphs\": true,
  \"stream_mode\": [
    \"updates\"
  ]
}"

请注意,我们不仅接收节点更新,还接收命名空间,这告诉我们正在从哪个图(或子图)流式传输。

调试

使用 debug 流模式在图的执行过程中尽可能多地流式传输信息。流式输出包括节点的名称以及完整状态。

async for chunk in client.runs.stream(
    thread_id,
    assistant_id,
    input={"topic": "ice cream"},
    stream_mode="debug"
):
    print(chunk.data)
const streamResponse = client.runs.stream(
  threadID,
  assistantID,
  {
    input: { topic: "ice cream" },
    streamMode: "debug"
  }
);
for await (const chunk of streamResponse) {
  console.log(chunk.data);
}
curl --request POST \
--url <DEPLOYMENT_URL>/threads/<THREAD_ID>/runs/stream \
--header 'Content-Type: application/json' \
--data "{
  \"assistant_id\": \"agent\",
  \"input\": {\"topic\": \"ice cream\"},
  \"stream_mode\": \"debug\"
}"

LLM 令牌

使用 messages-tuple 流模式从图的任何部分(包括节点、工具、子图或任务)逐个令牌流式传输大型语言模型 (LLM) 输出。

来自messages-tuple 模式的流式输出是一个元组 (message_chunk, metadata),其中

  • message_chunk:来自 LLM 的令牌或消息段。
  • metadata:一个字典,包含有关图节点和 LLM 调用的详细信息。
示例图
from dataclasses import dataclass

from langchain.chat_models import init_chat_model
from langgraph.graph import StateGraph, START

@dataclass
class MyState:
    topic: str
    joke: str = ""

llm = init_chat_model(model="openai:gpt-4o-mini")

def call_model(state: MyState):
    """Call the LLM to generate a joke about a topic"""
    llm_response = llm.invoke( # (1)!
        [
            {"role": "user", "content": f"Generate a joke about {state.topic}"}
        ]
    )
    return {"joke": llm_response.content}

graph = (
    StateGraph(MyState)
    .add_node(call_model)
    .add_edge(START, "call_model")
    .compile()
)
  1. 请注意,即使 LLM 使用 .invoke 而不是 .stream 运行,也会发出消息事件。
async for chunk in client.runs.stream(
    thread_id,
    assistant_id,
    input={"topic": "ice cream"},
    stream_mode="messages-tuple",
):
    if chunk.event != "messages":
        continue

    message_chunk, metadata = chunk.data  # (1)!
    if message_chunk["content"]:
        print(message_chunk["content"], end="|", flush=True)
  1. “messages-tuple”流模式返回一个元组 (message_chunk, metadata) 的迭代器,其中 message_chunk 是 LLM 流式传输的令牌,metadata 是一个字典,其中包含有关调用 LLM 的图节点的信息和其他信息。
const streamResponse = client.runs.stream(
  threadID,
  assistantID,
  {
    input: { topic: "ice cream" },
    streamMode: "messages-tuple"
  }
);
for await (const chunk of streamResponse) {
  if (chunk.event !== "messages") {
    continue;
  }
  console.log(chunk.data);  // (1)!
}
  1. “messages-tuple”流模式返回一个元组 (message_chunk, metadata) 的迭代器,其中 message_chunk 是 LLM 流式传输的令牌,metadata 是一个字典,其中包含有关调用 LLM 的图节点的信息和其他信息。
curl --request POST \
--url <DEPLOYMENT_URL>/threads/<THREAD_ID>/runs/stream \
--header 'Content-Type: application/json' \
--data "{
  \"assistant_id\": \"agent\",
  \"input\": {\"topic\": \"ice cream\"},
  \"stream_mode\": \"messages-tuple\"
}"

过滤 LLM 令牌

流式传输自定义数据

要发送自定义用户定义数据

async for chunk in client.runs.stream(
    thread_id,
    assistant_id,
    input={"query": "example"},
    stream_mode="custom"
):
    print(chunk.data)
const streamResponse = client.runs.stream(
  threadID,
  assistantID,
  {
    input: { query: "example" },
    streamMode: "custom"
  }
);
for await (const chunk of streamResponse) {
  console.log(chunk.data);
}
curl --request POST \
--url <DEPLOYMENT_URL>/threads/<THREAD_ID>/runs/stream \
--header 'Content-Type: application/json' \
--data "{
  \"assistant_id\": \"agent\",
  \"input\": {\"query\": \"example\"},
  \"stream_mode\": \"custom\"
}"

流式传输事件

要流式传输所有事件,包括图的状态

async for chunk in client.runs.stream(
    thread_id,
    assistant_id,
    input={"topic": "ice cream"},
    stream_mode="events"
):
    print(chunk.data)
const streamResponse = client.runs.stream(
  threadID,
  assistantID,
  {
    input: { topic: "ice cream" },
    streamMode: "events"
  }
);
for await (const chunk of streamResponse) {
  console.log(chunk.data);
}
curl --request POST \
--url <DEPLOYMENT_URL>/threads/<THREAD_ID>/runs/stream \
--header 'Content-Type: application/json' \
--data "{
  \"assistant_id\": \"agent\",
  \"input\": {\"topic\": \"ice cream\"},
  \"stream_mode\": \"events\"
}"