工作流和 Agent¶
本指南回顾了 Agent 系统的常见模式。在描述这些系统时,区分“工作流”和“Agent”可能很有用。Anthropic 在这里很好地解释了这种区别的一种思考方式
工作流是通过预定义的代码路径编排 LLM 和工具的系统。另一方面,Agent 是 LLM 动态指导自身流程和工具使用的系统,保持对其完成任务方式的控制。
这是一个可视化这些差异的简单方法
在构建 Agent 和工作流时,LangGraph 提供了许多优势,包括持久性、流式传输以及对调试和部署的支持。
设置¶
注意
Functional API 需要 @langchain/langgraph>=0.2.24
。
您可以使用任何支持结构化输出和工具调用的聊天模型。下面,我们展示了安装软件包、设置 API 密钥以及测试 Anthropic 的结构化输出/工具调用的过程。
初始化 LLM
import { ChatAnthropic } from "@langchain/anthropic";
process.env.ANTHROPIC_API_KEY = "<your_anthropic_key>";
const llm = new ChatAnthropic({
model: "claude-3-5-sonnet-latest",
});
构建模块:增强型 LLM¶
LLM 具有支持构建工作流和 Agent 的增强功能。这些功能包括结构化输出和工具调用,如下图所示,来自 Anthropic 博客
import { tool } from "@langchain/core/tools";
import { z } from "zod";
const searchQuerySchema = z.object({
searchQuery: z.string().describe("Query that is optimized web search."),
justification: z.string("Why this query is relevant to the user's request."),
});
// Augment the LLM with schema for structured output
const structuredLlm = llm.withStructuredOutput(searchQuerySchema, {
name: "searchQuery",
});
// Invoke the augmented LLM
const output = await structuredLlm.invoke(
"How does Calcium CT score relate to high cholesterol?"
);
const multiply = tool(
async ({ a, b }) => {
return a * b;
},
{
name: "multiply",
description: "multiplies two numbers together",
schema: z.object({
a: z.number("the first number"),
b: z.number("the second number"),
}),
}
);
// Augment the LLM with tools
const llmWithTools = llm.bindTools([multiply]);
// Invoke the LLM with input that triggers the tool call
const message = await llmWithTools.invoke("What is 2 times 3?");
console.log(message.tool_calls);
Prompt 链¶
在 Prompt 链中,每个 LLM 调用处理前一个调用的输出。
正如 Anthropic 博客中指出的那样
Prompt 链将任务分解为一系列步骤,其中每个 LLM 调用处理前一个调用的输出。您可以在任何中间步骤添加程序化检查(请参阅下图中的“gate”),以确保流程仍在轨道上。
何时使用此工作流:此工作流非常适合任务可以轻松干净地分解为固定子任务的情况。主要目标是通过使每个 LLM 调用成为更简单的任务,来权衡延迟以获得更高的准确性。
import { StateGraph, Annotation } from "@langchain/langgraph";
// Graph state
const StateAnnotation = Annotation.Root({
topic: Annotation<string>,
joke: Annotation<string>,
improvedJoke: Annotation<string>,
finalJoke: Annotation<string>,
});
// Define node functions
// First LLM call to generate initial joke
async function generateJoke(state: typeof StateAnnotation.State) {
const msg = await llm.invoke(`Write a short joke about ${state.topic}`);
return { joke: msg.content };
}
// Gate function to check if the joke has a punchline
function checkPunchline(state: typeof StateAnnotation.State) {
// Simple check - does the joke contain "?" or "!"
if (state.joke?.includes("?") || state.joke?.includes("!")) {
return "Pass";
}
return "Fail";
}
// Second LLM call to improve the joke
async function improveJoke(state: typeof StateAnnotation.State) {
const msg = await llm.invoke(
`Make this joke funnier by adding wordplay: ${state.joke}`
);
return { improvedJoke: msg.content };
}
// Third LLM call for final polish
async function polishJoke(state: typeof StateAnnotation.State) {
const msg = await llm.invoke(
`Add a surprising twist to this joke: ${state.improvedJoke}`
);
return { finalJoke: msg.content };
}
// Build workflow
const chain = new StateGraph(StateAnnotation)
.addNode("generateJoke", generateJoke)
.addNode("improveJoke", improveJoke)
.addNode("polishJoke", polishJoke)
.addEdge("__start__", "generateJoke")
.addConditionalEdges("generateJoke", checkPunchline, {
Pass: "improveJoke",
Fail: "__end__"
})
.addEdge("improveJoke", "polishJoke")
.addEdge("polishJoke", "__end__")
.compile();
// Invoke
const state = await chain.invoke({ topic: "cats" });
console.log("Initial joke:");
console.log(state.joke);
console.log("\n--- --- ---\n");
if (state.improvedJoke !== undefined) {
console.log("Improved joke:");
console.log(state.improvedJoke);
console.log("\n--- --- ---\n");
console.log("Final joke:");
console.log(state.finalJoke);
} else {
console.log("Joke failed quality gate - no punchline detected!");
}
LangSmith Trace
https://smith.langchain.com/public/a0281fca-3a71-46de-beee-791468607b75/r
import { task, entrypoint } from "@langchain/langgraph";
// Tasks
// First LLM call to generate initial joke
const generateJoke = task("generateJoke", async (topic: string) => {
const msg = await llm.invoke(`Write a short joke about ${topic}`);
return msg.content;
});
// Gate function to check if the joke has a punchline
function checkPunchline(joke: string) {
// Simple check - does the joke contain "?" or "!"
if (joke.includes("?") || joke.includes("!")) {
return "Pass";
}
return "Fail";
}
// Second LLM call to improve the joke
const improveJoke = task("improveJoke", async (joke: string) => {
const msg = await llm.invoke(
`Make this joke funnier by adding wordplay: ${joke}`
);
return msg.content;
});
// Third LLM call for final polish
const polishJoke = task("polishJoke", async (joke: string) => {
const msg = await llm.invoke(
`Add a surprising twist to this joke: ${joke}`
);
return msg.content;
});
const workflow = entrypoint(
"jokeMaker",
async (topic: string) => {
const originalJoke = await generateJoke(topic);
if (checkPunchline(originalJoke) === "Pass") {
return originalJoke;
}
const improvedJoke = await improveJoke(originalJoke);
const polishedJoke = await polishJoke(improvedJoke);
return polishedJoke;
}
);
const stream = await workflow.stream("cats", {
streamMode: "updates",
});
for await (const step of stream) {
console.log(step);
}
LangSmith Trace
https://smith.langchain.com/public/332fa4fc-b6ca-416e-baa3-161625e69163/r
并行化¶
通过并行化,LLM 同时处理一项任务
LLM 有时可以同时处理一项任务,并以编程方式聚合其输出。这种工作流,并行化,主要体现在两种关键变体中:分段:将任务分解为并行运行的独立子任务。投票:多次运行同一任务以获得不同的输出。
何时使用此工作流:当可以并行化划分的子任务以提高速度,或者当需要多个视角或尝试以获得更高置信度的结果时,并行化是有效的。对于具有多个考虑因素的复杂任务,通常当每个考虑因素由单独的 LLM 调用处理时,LLM 的性能会更好,从而可以集中关注每个特定方面。
import { StateGraph, Annotation } from "@langchain/langgraph";
// Graph state
const StateAnnotation = Annotation.Root({
topic: Annotation<string>,
joke: Annotation<string>,
story: Annotation<string>,
poem: Annotation<string>,
combinedOutput: Annotation<string>,
});
// Nodes
// First LLM call to generate initial joke
async function callLlm1(state: typeof StateAnnotation.State) {
const msg = await llm.invoke(`Write a joke about ${state.topic}`);
return { joke: msg.content };
}
// Second LLM call to generate story
async function callLlm2(state: typeof StateAnnotation.State) {
const msg = await llm.invoke(`Write a story about ${state.topic}`);
return { story: msg.content };
}
// Third LLM call to generate poem
async function callLlm3(state: typeof StateAnnotation.State) {
const msg = await llm.invoke(`Write a poem about ${state.topic}`);
return { poem: msg.content };
}
// Combine the joke, story and poem into a single output
async function aggregator(state: typeof StateAnnotation.State) {
const combined = `Here's a story, joke, and poem about ${state.topic}!\n\n` +
`STORY:\n${state.story}\n\n` +
`JOKE:\n${state.joke}\n\n` +
`POEM:\n${state.poem}`;
return { combinedOutput: combined };
}
// Build workflow
const parallelWorkflow = new StateGraph(StateAnnotation)
.addNode("callLlm1", callLlm1);
.addNode("callLlm2", callLlm2);
.addNode("callLlm3", callLlm3);
.addNode("aggregator", aggregator);
.addEdge("__start__", "callLlm1");
.addEdge("__start__", "callLlm2");
.addEdge("__start__", "callLlm3");
.addEdge("callLlm1", "aggregator");
.addEdge("callLlm2", "aggregator");
.addEdge("callLlm3", "aggregator");
.addEdge("aggregator", "__end__");
.compile();
// Invoke
const result = await parallelWorkflow.invoke({ topic: "cats" });
console.log(result.combinedOutput);
LangSmith Trace
https://smith.langchain.com/public/3be2e53c-ca94-40dd-934f-82ff87fac277/r
资源
文档
请参阅我们关于并行化的文档 这里。
import { task, entrypoint } from "@langchain/langgraph";
// Tasks
// First LLM call to generate initial joke
const callLlm1 = task("generateJoke", async (topic: string) => {
const msg = await llm.invoke(`Write a joke about ${topic}`);
return msg.content;
});
// Second LLM call to generate story
const callLlm2 = task("generateStory", async (topic: string) => {
const msg = await llm.invoke(`Write a story about ${topic}`);
return msg.content;
});
// Third LLM call to generate poem
const callLlm3 = task("generatePoem", async (topic: string) => {
const msg = await llm.invoke(`Write a poem about ${topic}`);
return msg.content;
});
// Combine outputs
const aggregator = task("aggregator", async (params: {
topic: string;
joke: string;
story: string;
poem: string;
}) => {
const { topic, joke, story, poem } = params;
return `Here's a story, joke, and poem about ${topic}!\n\n` +
`STORY:\n${story}\n\n` +
`JOKE:\n${joke}\n\n` +
`POEM:\n${poem}`;
});
// Build workflow
const workflow = entrypoint(
"parallelWorkflow",
async (topic: string) => {
const [joke, story, poem] = await Promise.all([
callLlm1(topic),
callLlm2(topic),
callLlm3(topic),
]);
return aggregator({ topic, joke, story, poem });
}
);
// Invoke
const stream = await workflow.stream("cats", {
streamMode: "updates",
});
for await (const step of stream) {
console.log(step);
}
LangSmith Trace
https://smith.langchain.com/public/623d033f-e814-41e9-80b1-75e6abb67801/r
路由¶
路由对输入进行分类,并将其定向到后续任务。正如 Anthropic 博客中指出的那样
路由对输入进行分类,并将其定向到专门的后续任务。这种工作流允许关注点分离,并构建更专业的 Prompt。如果没有这种工作流,优化一种输入可能会损害其他输入的性能。
何时使用此工作流:路由非常适用于复杂任务,在这些任务中,存在最好单独处理的不同类别,并且可以通过 LLM 或更传统的分类模型/算法准确处理分类。
import { StateGraph, Annotation } from "@langchain/langgraph";
import { z } from "zod";
// Schema for structured output to use as routing logic
const routeSchema = z.object({
step: z.enum(["poem", "story", "joke"]).describe(
"The next step in the routing process"
),
});
// Augment the LLM with schema for structured output
const router = llm.withStructuredOutput(routeSchema);
// Graph state
const StateAnnotation = Annotation.Root({
input: Annotation<string>,
decision: Annotation<string>,
output: Annotation<string>,
});
// Nodes
// Write a story
async function llmCall1(state: typeof StateAnnotation.State) {
const result = await llm.invoke([{
role: "system",
content: "You are an expert storyteller.",
}, {
role: "user",
content: state.input
}]);
return { output: result.content };
}
// Write a joke
async function llmCall2(state: typeof StateAnnotation.State) {
const result = await llm.invoke([{
role: "system",
content: "You are an expert comedian.",
}, {
role: "user",
content: state.input
}]);
return { output: result.content };
}
// Write a poem
async function llmCall3(state: typeof StateAnnotation.State) {
const result = await llm.invoke([{
role: "system",
content: "You are an expert poet.",
}, {
role: "user",
content: state.input
}]);
return { output: result.content };
}
async function llmCallRouter(state: typeof StateAnnotation.State) {
// Route the input to the appropriate node
const decision = await router.invoke([
{
role: "system",
content: "Route the input to story, joke, or poem based on the user's request."
},
{
role: "user",
content: state.input
},
]);
return { decision: decision.step };
}
// Conditional edge function to route to the appropriate node
function routeDecision(state: typeof StateAnnotation.State) {
// Return the node name you want to visit next
if (state.decision === "story") {
return "llmCall1";
} else if (state.decision === "joke") {
return "llmCall2";
} else if (state.decision === "poem") {
return "llmCall3";
}
}
// Build workflow
const routerWorkflow = new StateGraph(StateAnnotation)
.addNode("llmCall1", llmCall1)
.addNode("llmCall2", llmCall2)
.addNode("llmCall3", llmCall3)
.addNode("llmCallRouter", llmCallRouter)
.addEdge("__start__", "llmCallRouter")
.addConditionalEdges(
"llmCallRouter",
routeDecision,
["llmCall1", "llmCall2", "llmCall3"],
)
.addEdge("llmCall1", "__end__")
.addEdge("llmCall2", "__end__")
.addEdge("llmCall3", "__end__")
.compile();
// Invoke
const state = await routerWorkflow.invoke({
input: "Write me a joke about cats"
});
console.log(state.output);
LangSmith Trace
https://smith.langchain.com/public/c4580b74-fe91-47e4-96fe-7fac598d509c/r
示例
import { z } from "zod";
import { task, entrypoint } from "@langchain/langgraph";
// Schema for structured output to use as routing logic
const routeSchema = z.object({
step: z.enum(["poem", "story", "joke"]).describe(
"The next step in the routing process"
),
});
// Augment the LLM with schema for structured output
const router = llm.withStructuredOutput(routeSchema);
// Tasks
// Write a story
const llmCall1 = task("generateStory", async (input: string) => {
const result = await llm.invoke([{
role: "system",
content: "You are an expert storyteller.",
}, {
role: "user",
content: input
}]);
return result.content;
});
// Write a joke
const llmCall2 = task("generateJoke", async (input: string) => {
const result = await llm.invoke([{
role: "system",
content: "You are an expert comedian.",
}, {
role: "user",
content: input
}]);
return result.content;
});
// Write a poem
const llmCall3 = task("generatePoem", async (input: string) => {
const result = await llm.invoke([{
role: "system",
content: "You are an expert poet.",
}, {
role: "user",
content: input
}]);
return result.content;
});
// Route the input to the appropriate node
const llmCallRouter = task("router", async (input: string) => {
const decision = await router.invoke([
{
role: "system",
content: "Route the input to story, joke, or poem based on the user's request."
},
{
role: "user",
content: input
},
]);
return decision.step;
});
// Build workflow
const workflow = entrypoint(
"routerWorkflow",
async (input: string) => {
const nextStep = await llmCallRouter(input);
let llmCall;
if (nextStep === "story") {
llmCall = llmCall1;
} else if (nextStep === "joke") {
llmCall = llmCall2;
} else if (nextStep === "poem") {
llmCall = llmCall3;
}
const finalResult = await llmCall(input);
return finalResult;
}
);
// Invoke
const stream = await workflow.stream("Write me a joke about cats", {
streamMode: "updates",
});
for await (const step of stream) {
console.log(step);
}
LangSmith Trace
https://smith.langchain.com/public/5e2eb979-82dd-402c-b1a0-a8cceaf2a28a/r
编排器-工作器¶
通过编排器-工作器,编排器分解任务并将每个子任务委派给工作器。正如 Anthropic 博客中指出的那样
在编排器-工作器工作流中,中央 LLM 动态分解任务,将其委派给工作器 LLM,并综合它们的结果。
何时使用此工作流:此工作流非常适合您无法预测所需子任务的复杂任务(例如,在编码中,需要更改的文件数量以及每个文件中更改的性质可能取决于任务)。虽然它在地形上相似,但与并行化的关键区别在于其灵活性——子任务不是预定义的,而是由编排器根据特定输入确定的。
import { z } from "zod";
// Schema for structured output to use in planning
const sectionSchema = z.object({
name: z.string().describe("Name for this section of the report."),
description: z.string().describe(
"Brief overview of the main topics and concepts to be covered in this section."
),
});
const sectionsSchema = z.object({
sections: z.array(sectionSchema).describe("Sections of the report."),
});
// Augment the LLM with schema for structured output
const planner = llm.withStructuredOutput(sectionsSchema);
在 LangGraph 中创建工作器
由于编排器-工作器工作流很常见,LangGraph 具有 Send
API 来支持这一点。它允许您动态创建工作器节点,并向每个节点发送特定的输入。每个工作器都有自己的状态,所有工作器输出都写入一个共享状态键,编排器图可以访问该键。这使编排器可以访问所有工作器输出,并允许它将它们合成为最终输出。正如您在下面看到的,我们迭代一个部分列表,并将每个部分 Send
到一个工作器节点。请参阅更多文档这里和这里。
import { Annotation, StateGraph, Send } from "@langchain/langgraph";
// Graph state
const StateAnnotation = Annotation.Root({
topic: Annotation<string>,
sections: Annotation<Array<z.infer<typeof sectionSchema>>>,
completedSections: Annotation<string[]>({
default: () => [],
reducer: (a, b) => a.concat(b),
}),
finalReport: Annotation<string>,
});
// Worker state
const WorkerStateAnnotation = Annotation.Root({
section: Annotation<z.infer<typeof sectionSchema>>,
completedSections: Annotation<string[]>({
default: () => [],
reducer: (a, b) => a.concat(b),
}),
});
// Nodes
async function orchestrator(state: typeof StateAnnotation.State) {
// Generate queries
const reportSections = await planner.invoke([
{ role: "system", content: "Generate a plan for the report." },
{ role: "user", content: `Here is the report topic: ${state.topic}` },
]);
return { sections: reportSections.sections };
}
async function llmCall(state: typeof WorkerStateAnnotation.State) {
// Generate section
const section = await llm.invoke([
{
role: "system",
content: "Write a report section following the provided name and description. Include no preamble for each section. Use markdown formatting.",
},
{
role: "user",
content: `Here is the section name: ${state.section.name} and description: ${state.section.description}`,
},
]);
// Write the updated section to completed sections
return { completedSections: [section.content] };
}
async function synthesizer(state: typeof StateAnnotation.State) {
// List of completed sections
const completedSections = state.completedSections;
// Format completed section to str to use as context for final sections
const completedReportSections = completedSections.join("\n\n---\n\n");
return { finalReport: completedReportSections };
}
// Conditional edge function to create llm_call workers that each write a section of the report
function assignWorkers(state: typeof StateAnnotation.State) {
// Kick off section writing in parallel via Send() API
return state.sections.map((section) =>
new Send("llmCall", { section })
);
}
// Build workflow
const orchestratorWorker = new StateGraph(StateAnnotation)
.addNode("orchestrator", orchestrator)
.addNode("llmCall", llmCall)
.addNode("synthesizer", synthesizer)
.addEdge("__start__", "orchestrator")
.addConditionalEdges(
"orchestrator",
assignWorkers,
["llmCall"]
)
.addEdge("llmCall", "synthesizer")
.addEdge("synthesizer", "__end__")
.compile();
// Invoke
const state = await orchestratorWorker.invoke({
topic: "Create a report on LLM scaling laws"
});
console.log(state.finalReport);
LangSmith Trace
https://smith.langchain.com/public/78cbcfc3-38bf-471d-b62a-b299b144237d/r
资源
示例
import { z } from "zod";
import { task, entrypoint } from "@langchain/langgraph";
// Schema for structured output to use in planning
const sectionSchema = z.object({
name: z.string().describe("Name for this section of the report."),
description: z.string().describe(
"Brief overview of the main topics and concepts to be covered in this section."
),
});
const sectionsSchema = z.object({
sections: z.array(sectionSchema).describe("Sections of the report."),
});
// Augment the LLM with schema for structured output
const planner = llm.withStructuredOutput(sectionsSchema);
// Tasks
const orchestrator = task("orchestrator", async (topic: string) => {
// Generate queries
const reportSections = await planner.invoke([
{ role: "system", content: "Generate a plan for the report." },
{ role: "user", content: `Here is the report topic: ${topic}` },
]);
return reportSections.sections;
});
const llmCall = task("sectionWriter", async (section: z.infer<typeof sectionSchema>) => {
// Generate section
const result = await llm.invoke([
{
role: "system",
content: "Write a report section.",
},
{
role: "user",
content: `Here is the section name: ${section.name} and description: ${section.description}`,
},
]);
return result.content;
});
const synthesizer = task("synthesizer", async (completedSections: string[]) => {
// Synthesize full report from sections
return completedSections.join("\n\n---\n\n");
});
// Build workflow
const workflow = entrypoint(
"orchestratorWorker",
async (topic: string) => {
const sections = await orchestrator(topic);
const completedSections = await Promise.all(
sections.map((section) => llmCall(section))
);
return synthesizer(completedSections);
}
);
// Invoke
const stream = await workflow.stream("Create a report on LLM scaling laws", {
streamMode: "updates",
});
for await (const step of stream) {
console.log(step);
}
LangSmith Trace
https://smith.langchain.com/public/75a636d0-6179-4a12-9836-e0aa571e87c5/r
评估器-优化器¶
在评估器-优化器工作流中,一个 LLM 调用生成响应,而另一个 LLM 调用在循环中提供评估和反馈
在评估器-优化器工作流中,一个 LLM 调用生成响应,而另一个 LLM 调用在循环中提供评估和反馈。
何时使用此工作流:当我们有明确的评估标准,并且迭代改进提供可衡量的价值时,此工作流尤其有效。良好契合的两个迹象是,首先,当人表达他们的反馈时,LLM 响应可以得到明显的改进;其次,LLM 可以提供此类反馈。这类似于人类作者在制作润色文档时可能经历的迭代写作过程。
import { z } from "zod";
import { Annotation, StateGraph } from "@langchain/langgraph";
// Graph state
const StateAnnotation = Annotation.Root({
joke: Annotation<string>,
topic: Annotation<string>,
feedback: Annotation<string>,
funnyOrNot: Annotation<string>,
});
// Schema for structured output to use in evaluation
const feedbackSchema = z.object({
grade: z.enum(["funny", "not funny"]).describe(
"Decide if the joke is funny or not."
),
feedback: z.string().describe(
"If the joke is not funny, provide feedback on how to improve it."
),
});
// Augment the LLM with schema for structured output
const evaluator = llm.withStructuredOutput(feedbackSchema);
// Nodes
async function llmCallGenerator(state: typeof StateAnnotation.State) {
// LLM generates a joke
let msg;
if (state.feedback) {
msg = await llm.invoke(
`Write a joke about ${state.topic} but take into account the feedback: ${state.feedback}`
);
} else {
msg = await llm.invoke(`Write a joke about ${state.topic}`);
}
return { joke: msg.content };
}
async function llmCallEvaluator(state: typeof StateAnnotation.State) {
// LLM evaluates the joke
const grade = await evaluator.invoke(`Grade the joke ${state.joke}`);
return { funnyOrNot: grade.grade, feedback: grade.feedback };
}
// Conditional edge function to route back to joke generator or end based upon feedback from the evaluator
function routeJoke(state: typeof StateAnnotation.State) {
// Route back to joke generator or end based upon feedback from the evaluator
if (state.funnyOrNot === "funny") {
return "Accepted";
} else if (state.funnyOrNot === "not funny") {
return "Rejected + Feedback";
}
}
// Build workflow
const optimizerWorkflow = new StateGraph(StateAnnotation)
.addNode("llmCallGenerator", llmCallGenerator)
.addNode("llmCallEvaluator", llmCallEvaluator)
.addEdge("__start__", "llmCallGenerator")
.addEdge("llmCallGenerator", "llmCallEvaluator")
.addConditionalEdges(
"llmCallEvaluator",
routeJoke,
{
// Name returned by routeJoke : Name of next node to visit
"Accepted": "__end__",
"Rejected + Feedback": "llmCallGenerator",
}
)
.compile();
// Invoke
const state = await optimizerWorkflow.invoke({ topic: "Cats" });
console.log(state.joke);
LangSmith Trace
https://smith.langchain.com/public/86ab3e60-2000-4bff-b988-9b89a3269789/r
资源
示例
import { z } from "zod";
import { task, entrypoint } from "@langchain/langgraph";
// Schema for structured output to use in evaluation
const feedbackSchema = z.object({
grade: z.enum(["funny", "not funny"]).describe(
"Decide if the joke is funny or not."
),
feedback: z.string().describe(
"If the joke is not funny, provide feedback on how to improve it."
),
});
// Augment the LLM with schema for structured output
const evaluator = llm.withStructuredOutput(feedbackSchema);
// Tasks
const llmCallGenerator = task("jokeGenerator", async (params: {
topic: string;
feedback?: z.infer<typeof feedbackSchema>;
}) => {
// LLM generates a joke
const msg = params.feedback
? await llm.invoke(
`Write a joke about ${params.topic} but take into account the feedback: ${params.feedback.feedback}`
)
: await llm.invoke(`Write a joke about ${params.topic}`);
return msg.content;
});
const llmCallEvaluator = task("jokeEvaluator", async (joke: string) => {
// LLM evaluates the joke
return evaluator.invoke(`Grade the joke ${joke}`);
});
// Build workflow
const workflow = entrypoint(
"optimizerWorkflow",
async (topic: string) => {
let feedback: z.infer<typeof feedbackSchema> | undefined;
let joke: string;
while (true) {
joke = await llmCallGenerator({ topic, feedback });
feedback = await llmCallEvaluator(joke);
if (feedback.grade === "funny") {
break;
}
}
return joke;
}
);
// Invoke
const stream = await workflow.stream("Cats", {
streamMode: "updates",
});
for await (const step of stream) {
console.log(step);
console.log("\n");
}
LangSmith Trace
https://smith.langchain.com/public/f66830be-4339-4a6b-8a93-389ce5ae27b4/r
Agent¶
Agent 通常实现为 LLM 基于循环中的环境反馈执行操作(通过工具调用)。正如 Anthropic 博客中指出的那样
Agent 可以处理复杂的任务,但它们的实现通常很简单。它们通常只是 LLM 基于循环中的环境反馈使用工具。因此,至关重要的是要清晰且周到地设计工具集及其文档。
何时使用 Agent:Agent 可用于开放式问题,在这些问题中,很难或不可能预测所需的步骤数,并且您无法硬编码固定路径。LLM 可能会运行很多轮,您必须对其决策制定有一定的信任度。Agent 的自主性使其成为在受信任环境中扩展任务的理想选择。
import { tool } from "@langchain/core/tools";
import { z } from "zod";
// Define tools
const multiply = tool(
async ({ a, b }: { a: number; b: number }) => {
return a * b;
},
{
name: "multiply",
description: "Multiply two numbers together",
schema: z.object({
a: z.number().describe("first number"),
b: z.number().describe("second number"),
}),
}
);
const add = tool(
async ({ a, b }: { a: number; b: number }) => {
return a + b;
},
{
name: "add",
description: "Add two numbers together",
schema: z.object({
a: z.number().describe("first number"),
b: z.number().describe("second number"),
}),
}
);
const divide = tool(
async ({ a, b }: { a: number; b: number }) => {
return a / b;
},
{
name: "divide",
description: "Divide two numbers",
schema: z.object({
a: z.number().describe("first number"),
b: z.number().describe("second number"),
}),
}
);
// Augment the LLM with tools
const tools = [add, multiply, divide];
const toolsByName = Object.fromEntries(tools.map((tool) => [tool.name, tool]));
const llmWithTools = llm.bindTools(tools);
import { MessagesAnnotation, StateGraph } from "@langchain/langgraph";
import { ToolNode } from "@langchain/langgraph/prebuilt";
import {
SystemMessage,
ToolMessage
} from "@langchain/core/messages";
// Nodes
async function llmCall(state: typeof MessagesAnnotation.State) {
// LLM decides whether to call a tool or not
const result = await llmWithTools.invoke([
{
role: "system",
content: "You are a helpful assistant tasked with performing arithmetic on a set of inputs."
},
...state.messages
]);
return {
messages: [result]
};
}
const toolNode = new ToolNode(tools);
// Conditional edge function to route to the tool node or end
function shouldContinue(state: typeof MessagesAnnotation.State) {
const messages = state.messages;
const lastMessage = messages.at(-1);
// If the LLM makes a tool call, then perform an action
if (lastMessage?.tool_calls?.length) {
return "Action";
}
// Otherwise, we stop (reply to the user)
return "__end__";
}
// Build workflow
const agentBuilder = new StateGraph(MessagesAnnotation)
.addNode("llmCall", llmCall)
.addNode("tools", toolNode)
// Add edges to connect nodes
.addEdge("__start__", "llmCall")
.addConditionalEdges(
"llmCall",
shouldContinue,
{
// Name returned by shouldContinue : Name of next node to visit
"Action": "tools",
"__end__": "__end__",
}
)
.addEdge("tools", "llmCall")
.compile();
// Invoke
const messages = [{
role: "user",
content: "Add 3 and 4."
}];
const result = await agentBuilder.invoke({ messages });
console.log(result.messages);
LangSmith Trace
https://smith.langchain.com/public/051f0391-6761-4f8c-a53b-22231b016690/r
示例
这里是一个使用工具调用 Agent 来创建/存储长期记忆的项目。
import { task, entrypoint, addMessages } from "@langchain/langgraph";
import { BaseMessageLike, ToolCall } from "@langchain/core/messages";
const callLlm = task("llmCall", async (messages: BaseMessageLike[]) => {
// LLM decides whether to call a tool or not
return llmWithTools.invoke([
{
role: "system",
content: "You are a helpful assistant tasked with performing arithmetic on a set of inputs."
},
...messages
]);
});
const callTool = task("toolCall", async (toolCall: ToolCall) => {
// Performs the tool call
const tool = toolsByName[toolCall.name];
return tool.invoke(toolCall.args);
});
const agent = entrypoint(
"agent",
async (messages: BaseMessageLike[]) => {
let llmResponse = await callLlm(messages);
while (true) {
if (!llmResponse.tool_calls?.length) {
break;
}
// Execute tools
const toolResults = await Promise.all(
llmResponse.tool_calls.map((toolCall) => callTool(toolCall))
);
messages = addMessages(messages, [llmResponse, ...toolResults]);
llmResponse = await callLlm(messages);
}
messages = addMessages(messages, [llmResponse]);
return messages;
}
);
// Invoke
const messages = [{
role: "user",
content: "Add 3 and 4."
}];
const stream = await agent.stream([messages], {
streamMode: "updates",
});
for await (const step of stream) {
console.log(step);
}
LangSmith Trace
https://smith.langchain.com/public/42ae8bf9-3935-4504-a081-8ddbcbfc8b2e/r
预构建¶
LangGraph 还提供了一种预构建方法,用于创建如上定义的 Agent(使用 createReactAgent
函数)
https://github.langchain.ac.cn/langgraphjs/how-tos/create-react-agent/
import { createReactAgent } from "@langchain/langgraph/prebuilt";
// Pass in:
// (1) an LLM instance
// (2) the tools list (which is used to create the tool node)
const prebuiltAgent = createReactAgent({
llm: llmWithTools,
tools,
});
// invoke
const result = await prebuiltAgent.invoke({
messages: [
{
role: "user",
content: "Add 3 and 4.",
},
],
});
console.log(result.messages);
LangSmith Trace
https://smith.langchain.com/public/abab6a44-29f6-4b97-8164-af77413e494d/r
LangGraph 提供的功能¶
通过在 LangGraph 中构建上述每项功能,我们获得了一些东西
持久性:人机环路¶
LangGraph 持久层支持操作的中断和批准(例如,人机环路)。请参阅 LangChain 学院的模块 3。
持久性:记忆¶
LangGraph 持久层支持对话式(短期)记忆和长期记忆。请参阅 LangChain 学院的模块 2 和 5
流式传输¶
LangGraph 提供了几种流式传输工作流/Agent 输出或中间状态的方法。请参阅 LangChain 学院的模块 3。
部署¶
LangGraph 为部署、可观察性和评估提供了简单的入门途径。请参阅 LangChain 学院的模块 6。